
International Journal of Applied Geospatial Research 

 

 

 

 

Spatial Adaptive Large Neighborhood 
Search for Wood Supply Chain 

Optimization 
Johannes Scholz, Graz University of Technology, Institute of Geodesy, Graz, Austria 

 

 

ABSTRACT 

A Supply Chain describes a system flow from the raw product to the final product that is delivered to a 

customer. Hence, the participating organizations, people and transport processes are part of a Supply 

Chain. The Wood Supply Chain denotes a special Supply Chain that describes the flow of timber. This work 

focuses on the logistic operations from timber production to the first processing step in a saw or paper mill, 

and seeks to optimize the Wood Supply Chain with Adaptive Large Neighborhood Search. By introducing 

spatial amendments to Adaptive Large Neighborhood Search it is capable of solving the spatial-temporal 

problem of Wood Supply Chain optimization. A comparison of the obtained results and initial results give 

evidence that the optimization approach with spatial amendments results in an increase of the objective 

function of the given problem. 

Keywords: Real-time Spatial Optimization; Vehicle Routing Problem; Operations Research; 

Heuristics; Supply Chain, Spatial-temporal optimization 

 

INTRODUCTION 

Spatial optimization is a subfield of 

geography contributing – among others – e.g. 

to the field of transportation, location 

modeling or land use planning (Tong & 

Murray, 2012). Spatial optimization relies on 

mathematical optimization techniques to 

structure and solve problems with an inherent 

spatial context. Thus, any spatial 

optimization problem is an optimization 

problem where the spatial dimension is a 

crucial part and is part of the optimization 

problem itself. Such a geographical nature of 

an optimization problem can be reflected 

either as spatial variables and coefficients but 

also in terms of spatial relationships. 

Examples for such relationships are e.g. 

distance, adjacency, connectivity, 

containment, intersection or pattern (Tong & 

Murray, 2012). The importance of spatial 

optimization stems from the practical usage 

and the various application contexts of spatial 

problems. Due to contemporary available 

computing power we are able to model and 

solve complex spatial problems which are 

regarded computationally intensive. Hence, 

spatial optimization can help in decision 

making contexts, by delivering solutions to 

complex spatial problems. 
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The spatial optimization problem 

addressed in this paper is summarized in the 

term Wood Supply Chain. The Wood Supply 

Chain (WSC) is a special Supply Chain that 

characterizes the flow of timber starting at the 

production of the raw material and ends at the 

customer. To describe the WSC the 

stakeholders are listed: forest enterprises, 

saw mills, haulage companies and associated 

vehicles (see Figure 1) which are connected. 

In the WSC under investigation there are two 

distinct processes that have to be considered: 

transportation and timber trade. Timber trade 

in the WSC takes place at the saw mill where 

the delivered timber is measured. This 

process generates a monetary value in the 

supply chain which is refunded to the forest 

enterprise delivering the timber. This value is 

denoted as turnover in the following 

paragraphs. Transportation describes the 

process of timber haulage from forest 

enterprises – where timber is piled up at 

forest roads – to the saw mill, where the 

timber trade process follows. In order to carry 

out transportation, the resulting costs have to 

be considered. The contemporary WSC 

works as follows: timber is produced and 

piled up in the forest, and subsequently sold 

to a saw mill by contract. The saw mill 

organizes the haulage of the timber without 

considering surrounding conditions - e.g. 

timber piled up nearby that is ready for 

haulage. In addition, Austria is dominated by 

small scale forestry, with only small 

quantities of timber to be hauled – often less 

than the capacity of a truck. In order to 

overcome the shortcomings of the traditional 

WSC, an optimization process that considers 

the spatial-temporal dimension is developed. 

The cooperation of the stakeholders of the 

WSC can be enhanced, by altering today’s 

WSC in a significant manner. Timber is not 

sold to a specific saw mill as it is piled up in 

the forest (see Figure 1). Forest enterprises 

can notify the optimization system of a new 

supply point, as well as saw mills can notify 

the system of their timber demand. The 

spatial optimization system allocates the 

vehicles and plans their routes so that the 

overall profit (turnover minus haulage costs) 

of the WSC is optimized. This requires that 

the timber selling process is done ’on-the-fly’ 

during the planning process and not 

beforehand. Additionally, the demands of the 

saw mills and the forest enterprises have to 

be fulfilled. 

The objective of this paper is to 

evaluate on the performance of a spatial-

temporal amended heuristic to solve the 

WSC in comparison to an initial solution that 

behaves similar to a human dispatching 

manager. The evaluation is based on two test 

instances and using different Planning 

Horizons, that are described in the paper. 

Therefore, a mathematical model is created 

that is the foundation for the optimization 

itself, which relies on theory from 

Geographical Information Science (GISc) 

and Operations Research (OR).  

Due to the fact that the study does not 

cover all aspects of the WSC, there are a 

number of limitations that are described here. 

First, the paper deals with the WSC starting 

from timber piled up at the roadside in the 

forest and ending at the saw mill. In addition, 

the paper seeks to optimize the timber 

haulage from the forest to the saw mills. In 

addition, each saw mill has a specific timber 

demand over time that has to be fulfilled and 

the forest enterprises need timber to be 

picked up at latest at a certain point in time. 

Hence, the paper concentrates more on the 

demand side – to fulfill their needs 

accordingly – by also considering that timber 

has to be removed from the roadside in the 

forest. In addition, we do not take any 

managerial and market processes into 

account. Thus, the model is not suited to 

calculate the maximum overall revenue for 

forest owners or saw mills.  
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Figure 1 (about here). Simplified illustration 

of the Wood Supply Chain 
 

RELATED WORK 

The related work in this area is focused on 

three topics: Geographic Information Science 

and Technology (GIS&T), Operations 

Research (including Graph Theory) and 

Forestry Decision Support Systems. A 

combination of GIS&T and OR is capable of 

generating a solution for the given spatial-

temporal problem of WSC optimization. The 

recent advances in Forestry Decision Support 

Systems are targeted towards the analysis and 

creation of strategic and tactical Decision 

Support Systems (DSSs) even in the field of 

WSC management. 

Geographic Information Science and 
Technology 

Looking at spatial-temporal 

processes of the WSC, time geography is one 

of the relevant principles for the movement 

objects in space (Hägerstrand, 1970). This 

principle allows the creation of 3D-matrices 

with three axes: time, activity and position. 

Each activity of an object can be traced using 

space-time paths, which are a trajectory of 

movements in physical space over time. In 

addition, Lenntorp (1977) incorporated the 

idea of transportation. It is possible to model 

the potential area that can be reached in a 

given amount of time starting from the actual 

position based on a network on which 

movements can be done. This continuous 

space in the space-time coordinate system is 

named space– time prism. When projected 

onto a two–dimensional space the resulting 

region is called potential path area, which 

represents an outlook of possible future 

movements by actors. This has been used by 

Raubal et al (2007) for selecting host-client 

combinations in shared–ride trip planning. In 

this context the determination of timber that 

is potentially reachable for a particular 

vehicle can be modelled with time 

geography. The approach is described in 

detail in Scholz & Bartelme (2011). 

In order to model the “movement” of 

timber and vehicles, network flows are of 

importance. They are mentioned by Ahuja et 

al. (1993) and Fohl et al. (1996). Goodchild 

(1998) distinguishes three different types of 

flows: flows allocated to the data model, 

flows between origins and destinations where 

flows exist between two places in both 

directions (square case), flows between 

origins and destinations similar to the square 

case, but where the set of origins is different 

than the set of destinations (rectangular case). 

For WSC management the rectangular case is 

of importance and has to be modeled 

accordingly, due to the similarity of the 

rectangular case and the WSC. 

To model and solve complex spatial-

temporal problems in a GIS environment 

Murray (2010) reviewed the possibilities of 

spatial analysis and associated areas in the 

context of locational analysis. Murray (2010) 

mentions solution approaches to complex 

locational problems. Among them a 

combination of GISc and mathematical 

solution techniques (independent if exact or 

heuristic approaches are used) for given 

spatial problems are highlighted (see e.g. Liu 

et al., 2006, Bender et al., 2002, Delmelle et 

al., 2012). Tong and Murray (2012) coined 

the term spatial optimization for optimization 

problems with an explicit spatial component 

to solve. Hence, a spatial optimization 

problem is an optimization with spatial 

decision variables. Early works in the area of 

optimization in geography are published by 

Garrison (1979) Scott (1971), Beaumont 

(1972) and more recently Church (2001) or 

Delmelle et al. (2012). The integration of 

optimization models and GIS has been of 

interest for multi-objective decision making 

(Malczewski, 2006).  

Operations Research 
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Operations Research including Graph Theory 

provides the methodology for modeling the 

problem using a mathematical formulation 

and to optimize a given problem accordingly. 

The modeling of the given problem – the 

WSC – is based on the definition of a specific 

instance of a Vehicle Routing Problem 

(VRP). Toth and Vigo (2002) elaborate on 

VRPs and the VRP variants in terms of 

mathematical definitions as general linear 

programs. In general, to solve VRPs a 

number of methodologies and algorithms 

exist, that are mentioned in literature (e.g. 

Toth & Vigo, 2002). Exact techniques 

provide optimal solutions to given problems, 

while they are not capable of solving big 

problem instances. In comparison, heuristics 

are able to cope with great problems but do 

not provide an exact solution. Additionally, 

the quality of the result – denoted as factor 𝜖, 

where 𝑠′ = 𝜖 ∗ 𝑠  (𝑠  indicating the optimum 

and 𝑠′ the result of the heuristic) – cannot be 

determined by a heuristic, which is explained 

by Voss (2001). Due to the ability to deal 

with great problem instances in reasonable 

computing time, heuristics are of importance 

for optimizing the WSC. Ropke (2005) 

published a heuristic for VRPs with Pickup 

and Delivery and Time Windows 

(VRPPDTW) that relies on Variable 

Neighborhood Search (Mlacenovic & 

Hansen, 1997) and Large Neighborhood 

Search (Shaw, 1998). The methodology is 

called Adaptive Large Neighborhood Search 

(ALNS) and relies on the Ruin and Recreate 

(Schrimpf et al., 2000) and Ripup and 

Reroute approach (Dees & Karger, 1982). 

ALNS was tested using problem instances 

published by Li and Lim (2003) and Nanry 

and Barnes (2000). The results show that 

ALNS improves more than half of the 

solutions. In addition, for 80% of the 

problems the achieved solution is at least as 

good as the previously best known solution 

(Ropke & Pisinger, 2006). 

Forestry Decision Support Systems 

Forestry Decision Support Systems are a 

current research topic in forest science, that 

focus on (spatial) decision making for forest 

related problems. One problem class that is 

under investigation is the ”optimal” planning 

of timber transport from forest to saw mills, 

using basic GIS technology and methods 

from Operations Research. Forsberg et al. 

(2005), Andersson et al. (2008) and Flisberg 

et al. (2009) show operational, tactical and 

strategic planning with the help of Tabu 

Search (Glover & Laguna, 1997), a technique 

that searches through a solution space of a 

given problem for an optimal solution. In 

addition, this method stores search moves in 

a memory structure in order to avoid making 

unsuccessful search moves again. These 

approaches use a VRP with Time Windows 

to model the WSC and make use of a two 

stage process to optimize the problem. The 

Tabu Search is packed into a Decision 

Support System (DSS) that makes use of 

basic GIS techniques and spatial data, e.g. on 

the forest road network. The results of these 

systems show that DSSs can improve the 

performance of the WSC, even if they are 

only modeled with consideration of transport 

costs (Andersson et al., 2008). 

MATHEMATICAL FORMULATION 
AND PROBLEM DESCRIPTION 

The WSC, as described in this paper, has a 

number of characteristics that influence the 

VRP variant for modeling the problem 

accordingly. Two main things have to be 

considered: 

- vertices have to be serviced – being 

either pickup or delivery 

- vertices have to be visited within a 

given time interval 

As both characteristics of the WSC 

can be modeled with the VRPPDTW (Toth & 

Vigo, 2002; Ropke, 2005) – which is a 

variant of the standard VRP – the WSC is 

treated as VRPPDTW. To model the problem 

in a machine readable manner it has to be 
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formalized as Linear Program (LP). The LP 

will not be formulated here, due to fact that 

this is not supporting the understanding of the 

problem in this context. Hence, the problem 

with the objective function and the 

constraints is described in natural language in 

order to provide an understandable 

formulation of the problem.  

The LP consists of an objective 

function that seeks to optimize the 

VRPPDTW by maximizing the profit of the 

system. The profit is defined here as sales 

revenue for delivered timber minus haulage 

costs, where haulage costs are defined as 

fixed rate per kilometer travelled by all trucks 

in the supply chain. Generally, the 

mathematical problem describes the flow of 

timber from supply to demand points using a 

limited fleet of vehicles with specific 

capacity. The problem formulated in this 

paper models the WSC in a way that timber 

suppliers are cooperating, due to the fact that 

more than one supply vertex can be serviced 

by one vehicle. In addition, it is mandatory 

that saw mills cooperate, because every 

vehicle may visit more than one saw mill with 

one specific truckload. Thus, each haulage 

company and/or vehicle is not bound to a 

specific forest enterprise and/or saw mill, 

which increases the flexibility of the WSC at 

hand. 

In the model we consider an 

undirected weighted Graph 𝐺 = (𝑉, 𝐸, 𝑤) , 

where the weight w is denoted as length of an 

edge. Consecutively, 𝑤𝑛,𝑚  denotes the 

weight of edge (𝑛, 𝑚). The set of vertices V 

can be split up into three subsets: set of 

delivery vertices, set of pickup vertices and 

the set of depots. From a defined list of timber 

assortments 𝑄 – quality classes – each single 

assortment 𝑞  can be identified. The pickup 

vertices have, for each 𝑞, a given quantity to 

be picked up, a start date/time when timber is 

ready to be picked up, a due date/time when 

timber has to be fully removed and a price – 

denoted as time window. Delivery vertices 

have a defined quantity for each quality class, 

a start date/time when timber delivery should 

start, an end date/time when timber delivery 

should be finished and a price. 𝑇 denotes the 

set of trucks, which consists of a number of 

single vehicles 𝑡 . Each 𝑡  has the following 

parameters: capacity, load time per m3 

timber, a daily working time start and daily 

working time end (a single driver per truck is 

assumed). A route 𝑟 denotes the route of a 

vehicle starting and ending at the depot. For 

formal reasons each r is broken down into 

single truckloads, which describes the 

timespan of a vehicle starting from a depot or 

directly after having delivered timber to a 

delivery vertex, loading timber at one or 

more supply points and delivering that timber 

to one or more saw mills and/or traveling to 

the depot if the working time limit is ending 

(see Figure 2).  

To model a VRP accordingly, 

delivery and pickup vertices have to be 

connected. Thus, the amount of timber 

loaded at a pickup vertex – with respect to 

quality and the respective truck - and the 

volume of timber unloaded at a delivery node 

are to be determined. If a vehicle visits or 

services a vertex the arrival and the leaving 

time are calculated with respect to the 

shortest path in the road network. The actual 

load of a vehicle at a vertex is determined in 

order to see if the node is visited within the 

defined time window. To decide on the 

movement of a vehicle from vertex 𝑢 to 𝑣 the 

binary – i.e. [0, 1] – decision variable 𝑥  is 

used that denotes the movement of a vehicle 

over a certain edge with a given truckload. In 

order to model the driving time from vertex 

𝑢 to 𝑣 a certain variable is used throughout 

the model. To limit the timber delivered to 

saw mills, a constraint regulates that there is 

not more timber arriving in saw mills than 

demanded. Special consideration has to be 

paid that that no timber gets lost after the 

pickup process and generally in the WSC. 

Thus, the amount of timber flowing out of 
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pickup vertices has to be equal to timber 

amount flowing into delivery vertices. One 

constraint defines that timber at a certain 

vertex must not be lower than zero – in order 

to prohibit that timber is removed from piles 

although nothing is left. From the constraints 

and is obvious that each timber pile and each 

saw mill – represented by a vertex – can be 

visited more than once, which causes 

additional complexity to the representation of 

the WSC as VRPPDTW. Delivery and 

pickup vertices are visited by vehicles as long 

as timber is present at the timber pile (for 

pickup) or timber can be delivered to the saw 

mill (for delivery vertices). For a consistent 

terminology the term request is introduced. It 

describes the process of a vehicle visiting two 

vertices in a certain order – i.e. pickup and 

delivery - in order to transport timber from 

one vertex to the other. 

Figure 2. (about here) A route of one vehicle 

starting and ending at the Depot(D) 

servicing a number of vertices. The numbers 

near the arrows indicate the temporal 

sequence of the vehicle's movements. All 

vertices starting with C are locations with 

pickup, except for vertex C7 - a delivery 

vertex. 

SPATIAL ADAPTIVE LARGE 
NEIGHBORHOOD SEARCH 

Ropke and Pisinger (2006) propose Adaptive 

Large Neighborhood Search (ALNS) as a 

heuristic to optimize a given VRPPDTW. It 

relies on the concept of modifying a given 

solution of a VRP and an evaluation if it 

satisfies criteria from Simulated Annealing 

(SA). ALNS is a heuristic that performs at 

least as good as 80 % of the best known 

solutions of standardized problem instances 

(Ropke & Pisinger, 2006; Ropke, 2005). As 

ALNS has been successfully tested on non-

spatial problems, it is applied to a spatial 

problem in this paper. In addition, the 

optimization heuristic ALNS is enveloped in 

a spatial data infrastructure in this approach, 

which is outside of the scope of this paper. A 

description of the ALNS approach can be 

found in Scholz & Bartelme (2010) and in 

Figure 3. The optimization process starts with 

the generation of an initial solution, which is 

described in section “Generation of an initial 

solution”. Based on an initial solution ALNS 

tries to improve the solution by modifying it 

with the help of spatial relations like nearness 

and/or position, which are described in detail 

in the section “Spatial Adaptive Large 

Neighborhood Search for Wood Supply 

Chain Optimization”. In order to cope with 

the temporal dimension of the WSC the 

Rolling Schedule Approach (e.g. Wagner & 

Whithin, 1958) is employed, which helps to 

decrease the problem complexity and 

uncertainty in terms of data quality. This 

increases the accuracy of the obtained results 

(see section “Rolling Schedule approach” for 

details). 

Figure 3. (about here) ALNS workflow (from 

Scholz & Bartelme (2010)) 

 

Generation of an Initial Solution 

An initial solution is necessary in order to 

start the ALNS process. Due to the fact that 

the first solution has to be feasible in terms of 

the given constraints, the quality – i.e. 

optimality – of the solution is not of any 

particular interest. In order to provide such a 

solution in a short time heuristics are applied. 

Classical heuristics for the generation of an 

initial solution are savings heuristics that 

“gradually build a feasible solution while 

keeping an eye on solution cost, but they do 

not contain an improvement phase per se” 

(Laporte & Semet, 2002). Clarke and Wright 

(1964) introduced the class of savings 

heuristics that is implemented in the 

approach presented in this paper. This 

construction heuristic constructs routes that 

serve exactly one customer at first hand. In a 

following phase these routes are merged with 
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consideration of user defined criteria. Thus 

Traveling Salesman Problems as well as 

VRPs can be solved accordingly. 

In this publication, a heuristic for 

generating an initial solution is used that is 

similar to savings heuristics. First, routes are 

created that start and end at a depot, pick up 

timber at exactly one pickup point and deliver 

it immediately to a saw mill. The routes from 

the depot to a pickup point, from pickup point 

to saw mill and back to the depot are shortest 

paths with respect to minimum travel time. 

Secondly, these routes are merged until no 

more routes can be merged. The merging 

process involves a process comparable to 

human behavior. First it selects pickup 

locations that are geographically near, having 

the same type of timber or the same delivery 

point (sub-route merging). In addition, the 

algorithm has an eye on the current loading 

of the truck, thus avoiding overloading of a 

vehicle. Finally, the generated routes are 

combined so that each vehicle performs a 

number of turns between pickup and delivery 

points per day (tour merging). If the number 

of resulting routes exceeds the number of 

available vehicles, routes are deleted until the 

number of routes is lower than or equal to the 

number of vehicles. Routes are deleted based 

on the value of the objective function, 

starting with the route having the lowest 

value. This approach is similar to the way 

human dispatching managers plan routes.  

Spatial Adaptive Large Neighborhood 
Search for Wood Supply Chain 
Optimization 

Spatial ALNS for WSC optimization relies 

on ALNS published by Ropke (2005). As 

mentioned before, ALNS modifies a given 

solution in order to optimize it. Generally 

speaking, it enhances Local Search by adding 

several heuristics to modify the given 

solution. Thus, new solutions are created by 

partly destroying and repairing the given 

solution, by deleting a number 𝑞 of requests 

and inserting 𝑞 requests at another position to 

generate a new solution. Such new solutions 

are accepted if they satisfy Simulated 

Annealing (SA) – a metaheuristic introduced 

by Kirkpatrick et al (1983). A more detailed 

description of ALNS is found in literature 

(e.g. Ropke, 2005; Ropke & Pisinger, 

2006).The heuristics available to alter a given 

solution are divided into destroy and repair 

heuristics. The destroy heuristics are: Shaw 

Removal, Random Removal and Worst 

Removal. The repair heuristics are: basic 

Greedy Heuristic, Regret-2 and Regret-3 

heuristic. 

Shaw Removal alters the current 

solution by deleting a certain request (i.e. a 

vertex) – being either pickup or delivery – 

based on a similarity value of two requests 𝑖 
and 𝑗 . Equation (1) shows the relatedness 

measure 𝑅𝑖,𝑗. The variable 𝑑𝑖,𝑗 represents the 

distance between nodes (𝑖, 𝑗) , whereas 

𝑇𝑖 denotes the time when 𝑖  is visited and 𝑙𝑖 

shows the timber quantity of request 𝑖 . 

𝑞𝑖,𝑗shows the timber quality similarity of the 

requests (see equation (2)) and 𝑡𝑖,𝑗  denotes 

the request type similarity (see equation (3)). 

𝐶  is a constant with a high numeric value, 

whereas φ, ϕ and ψ are parameters to weigh 

the parts of equation (1). The higher the 

relatedness measure 𝑅𝑖,𝑗  is, the lower is the 

similarity between the requests 𝑖 and 𝑗. 

𝑅𝑖,𝑗 =  φ(𝑑𝑖,𝑗)  +  ϕ(|𝑇𝑖 − 𝑇𝑗|)

+  ψ(|𝑙𝑖 − 𝑙𝑗|)  + 𝑞𝑖,𝑗

∗ 𝐶 + 𝑡𝑖,𝑗 ∗ 𝐶 

(1) 

 

𝑞𝑖,𝑗 =  {
0   𝑖𝑓 𝑞𝑖 = 𝑞𝑗

1   𝑖𝑓 𝑞𝑖 ≠  𝑞𝑗
 (2) 

 

𝑡𝑖,𝑗

=  {
0           if request types 𝑖, 𝑗 are equal
1   if request types 𝑖, 𝑗 𝑎re not equal

 

(3

) 

 

Random Removal selects a number q 

of requests based on randomness and 

removes them from the solution s. Worst 

Removal deletes “expensive” requests, i.e. 

requests that worsen the objective function 
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most. Thus, by removing such “bad” requests 

and inserting them at another position the 

objective function may result in a better 

numeric value, due to reduced vehicle travel 

distances. 

The first repair heuristic mentioned in 

this paper is the basic Greedy heuristic. This 

heuristic repairs a given solution, but is solely 

interested in increasing the overall profit - 

sales revenue minus haulage costs. ∆𝑓𝑖,𝑘 

denotes the difference when inserting request 

𝑖 in route 𝑘 at the position that results in the 

highest increase of the objective function. If 

𝑖 cannot be inserted in route k then ∆𝑓𝑖,𝑘 =
∞. The value 𝑐𝑖  is defined as the profit of 

inserting request 𝑖 at its best position, where 

𝑐𝑖 =  max
𝑘∈𝐾

{∆𝑓𝑖,𝑘}. This position is called the 

maximum profit position, where the request 𝑖 
is selected that fulfills the function: max

𝑖∈𝑈
𝑐𝑖. 

𝑈 denotes the set of unplanned requests. The 

process continues until no more requests can 

be inserted or all requests are inserted.  

The family of Regret Heuristics forms 

a class of heuristics that inserts requests to the 

given solution based on a selection process 

that tries to overcome problems caused by a 

pure Greedy approach. Thus, Regret 

Heuristics incorporate a look into the future 

to detect “hard” requests, that the system 

regrets most if they are not inserted now. In 

order to determine “hard” requests the 

variable 𝑥𝑖𝑘 ∈  {1, … , 𝑚} represents the route 

for which request 𝑖  has the 𝑘  th highest 

increase of the objective value where 𝑚 is the 

number of vehicles. Mathematically defined, 

this can be denoted as ∆𝑓𝑖,𝑥𝑖𝑘
≥

 ∆𝑓𝑖,𝑥
𝑖𝑘′  𝑓𝑜𝑟 𝑘 ≤ 𝑘′. ∆𝑓𝑖,𝑥𝑖𝑘

 𝑐𝑖  can defined as 

𝑐𝑖 = ∆𝑓𝑖,𝑥𝑖1
. Subsequently, the regret value 

𝑐𝑖
∗ is defined as 𝑐𝑖

∗ = ∆𝑓𝑖,𝑥𝑖1
− ∆𝑓𝑖,𝑥𝑖2

. Hence, 

the regret value is the difference in the profit 

of inserting a request in its best and second 

best route. In each iteration the request 𝑖 is 

chosen that fulfills equation (4) and this 

request is inserted at its maximum profit 

position. 

 
max
𝑖∈𝑈

𝑐𝑖
∗ (4) 

 

The Regret Heuristics form a family 

of inserting heuristics – the Regret-k 

Heuristics. In the prior paragraph the Regret-

2 heuristic is explained, which calculates 𝑐𝑖
∗  

with respect to the 2nd best ∆𝑓𝑖,𝑥𝑖𝑘
 value. By 

considering the 𝑘 th best route 𝑐𝑖
∗  has to be 

calculated in the following way: 

 

𝑐𝑖
∗ = ∑ (∆𝑓𝑖,𝑥𝑖1

− ∆𝑓𝑖,𝑥𝑖𝑗
)

𝑘

𝑗=1

 (5) 

 

Adaptive Large Neighborhood in this 

paper is restricted to Regret–3 and Regret–2 

Heuristic and we intentionally omit other 

Regret–k Heuristics. The selection of a 

removal and insertion heuristic for the next 

iteration is based on a roulette wheel 

selection principle (Baker, 1987). Weights 

𝑤𝑖  , 𝑖 ∈  {1, … , 𝑘}  are assigned to each of 

the 𝑘  heuristics. The roulette wheel 

procedure selects the heuristic 𝑖  with 

probability: 

 
𝑤𝑢

∑ 𝑤𝑖
𝑘
𝑖=1

⁄  (6) 

 

The update of the weights is done 

automatically in every ALNS iteration in 

order to measure the performance of each 

heuristic. Thus, the algorithm keeps track of 

the success of each heuristic and determines 

their score. Ropke (2005) divides this process 

into segments of 100 iterations. At the 

beginning of each segment the score is set to 

zero, and each time a heuristic creates a 

solution the score is increased by values α1, 

α2 or α3 based on the following cases: 

 α1: a new global best solution is 

found 

 α2: a solution that has not been 

accepted before is found, and 
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objective value is better than in the 

current solution 

 α3: a solution that has not been 

accepted before is found, the 

objective value is not better than in 

the current solution 

 

Due to the fact that in every iteration 

one remove and insert heuristic is applied, the 

algorithm cannot distinguish which heuristic 

is responsible for the generated solution. 

Hence, both heuristics – remove and insert – 

are updated by the same values α1, α2 or α3. 

At the end of each segment 𝑗 the weight 𝑤𝑖,𝑗 

of each heuristic 𝑖 is updated – which equals 

𝑤𝑢  from equation (6). Thus, the weight for 

heuristics in the next segment 𝑗 + 1  is 

obtained using equation (7). In this formula 

π𝑖  denotes the score of the heuristic 𝑖 
achieved and θ𝑖  represents the number that 

heuristic 𝑖 was used in the last segment. The 

variable 𝑟 = [0,1]  – a reaction factor – 

controls the inertia of the system. A low value 

of  𝑟 results in a slow change of 𝑤𝑖,𝑗+1 and 

vice versa. 

 

𝑤𝑖,𝑗+1 = 𝑤𝑖,𝑗(1 − 𝑟) + 𝑟
π𝑖

θ𝑖
 (7) 

 

As mentioned previously and in 

Scholz and Bartelme (2010), ALNS makes 

use of Simulated Annealing (SA) to 

overcome local optima in order to reach a 

global optimum. SA makes use of an analogy 

between the cooling schedule of metals with 

minimum energy crystalline structure and 

mathematical optimization (Kirkpatrick et 

al., 1983). The main advantage of SA is 

described by the fact that the technique 

avoids becoming “trapped” in a local 

optimum. As metaheuristic it accepts 

solutions that improve the objective function, 

but also solutions that do not improve the 

objective function as such. The acceptance of 

non-improving solutions is depending on the 

current temperature of the process – where 

the temperature is gradually cooled down. In 

general, the cooler the temperature gets the 

lower is the probability for accepting non-

improving solutions. 

Mathematically, SA accepts a new 

solution 𝑠∗ if the objective value is “better” 

than the objective value of the current 

solution 𝑠. If 𝑓(𝑠∗) denotes the value of the 

objective function of a new solution 𝑠∗ then 

“good” moves of ALNS are accepted when 

𝑓(𝑠) < 𝑓(𝑠∗). For the case 𝑓(𝑠) ≥ 𝑓(𝑠∗) SA 

decides if 𝑠∗  is accepted, which is 

implemented according to Kirkpatrick et al. 

(1983) and van Laarhoven and Aarts (1987), 

using equation (8), where 𝑅  is a random 

number. The start temperature for SA is 

determined using equation (9). By using 

equation (9) the start temperature is defined 

so that a new solution that is 𝑤 worse than an 

initial solution 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is accepted with a 

probability of 0.5. 𝑤  is set to 0.05 in this 

context. The termination criterion of ALNS 

is set to a maximum number of iterations. 

Here it is set to a value of 25000, which is 

also used by Ropke (2005). 

 

𝑒
−𝑓(𝑠)−𝑓(𝑠∗)

𝑇 > 𝑅           
where 𝑅 = {𝑥 ∈ ℝ|(0 ≤ 𝑥 < 1)} 

(8) 

 

𝑇𝑠𝑡𝑎𝑟𝑡 = 
 

−(𝑓(𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙) − 𝑓(𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙) ∗ (1 − 𝑤))

ln 0.5
 

(9) 

 

Rolling Schedule Approach 

Modeling and Simulation of dynamic 

systems requires any system to cope with 

uncertainty. Especially for WSC 

optimization, the system has to work with the 

assumption that reality conforms exactly to 

the optimized solutions. The further the 

system attempts to develop a global optimal 

solution looking far into the future the more 

uncertain the results are, due to data not 

existing or being only partly accurate (e.g. 

vehicle breakdown, weather or changed 
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demands of customers). Thus, the system 

optimizes only for a given time period where 

uncertainty is low. In addition, this approach 

reduces the complexity of the problem which 

reduces computing time. Such approaches 

are discussed in literature (Teng et al, 2006; 

Spitter, 2005; Wagner & Whithin, 1958), 

which are called Rolling Schedule 

approaches (RSAs). In detail, a RSA divides 

time into discrete time periods 𝑃1 , . . . , 𝑃𝑛 and 

discrete time intervals – the Planning 

Horizons – which contain one or more time 

periods. RSAs work as follows (see Figure 

4): 

1. divide time into n time periods (e.g. 

days, months) 

2. define planning horizon, i.e. the 

number of time periods the systems 

plans ahead 

3. solve the optimization task for 

planning horizon starting at period 

𝑝 =  1 

4. after period p = 1 is over roll horizon 

forward by one period, i.e. 𝑝 =  𝑝 +
 1 

5. repeat (3) and (4) until a given stop 

criterion 

In addition, the Rolling Schedule 

Approach the dynamic adjustment of the 

optimization system with the real situation 

with the help of e.g. mobile devices located 

on the vehicles and the saw mills. The mobile 

devices act similar to a sensor delivering 

(near) real-time information on the status of 

the supply chain. Hence, at each end of a 

period the digital representation of the supply 

chain to be optimized can be updated with 

respect to the real status.  

Generally, rolling schedule 

approaches result possibly in non-optimal 

solutions, the procedure is relevant for real-

life situations (Spitter et al., 2005; Bertrand et 

al., 1990; Blackburn & Millen, 1980). The 

justification for the real-life relevance is 

given by the fact that demands and supply 

might change over time and can be regarded 

as fixed in the near future. In order to react to 

such changes rolling schedules are employed 

in industry related optimization systems (e.g. 

in material requirements planning). Teng et al 

(2006) report on rolling schedule heuristic 

results for a TSP problem. There the solution 

found by the rolling schedule heuristics is on 

the average 2.5% worse than the upper bound 

(i.e. best solution) for the problem. 

EXPERIMENT SETUP 

To conduct an experiment to evaluate the 

performance of ALNS applied to the WSC 

compared to an initial solution a SDSS 

following a service-oriented architecture has 

been created, which is not stressed in this 

paper. In this chapter, the focus lies on the 

generated test instances and spatial data 

which are the basis for the evaluation of 

ALNS in the context of WSC optimization. 

For testing spatial ALNS we employ street 

network data from a commercial vendor. 

These data contain the geometry of public 

roads with additional attributes, e.g. on 

average and allowed speed on a certain road 

segment. Due to the fact that public data on 

forest roads are not available in Austria, the 

experiments are limited to the public road 

network served by the commercial vendor. 

Thus, timber piles to pick up and saw mills 

are strictly modeled as vertices in the road 

network. The area of interest is in the 

province of Styria (Austria) (see Figure 5). 

The size of the test area is approximately 

5018 km2 and it contains 55308 road 

segments with a total length of 15090 km. In 

order to evaluate ALNS with respect to WSC 

optimization two test instances are created. 

Test instance one (TI1) consists of ten piles, 

28 assortments, four saw mills, 38 different 

demands of timber and 35 trucks located in 

six haulage companies. A map of the spatial 

objects of TI1 is given in Figure 6(a). TI2 has 

20 timber piles, 80 assortments in the timber 
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piles, four saw mills, 43 different demands of 

timber and 35 vehicles in six haulage 

companies. In Figure 6(b) a map of TI2 is 

shown. The positions of haulage companies 

as well as the positions of saw mills are the 

same for both test instances. A detailed 

description of TI1 and TI2 can be found in 

Scholz (2010). The data of the test instances, 

which are spatial and non-spatial in nature, 

are stored in a PostGIS database. In order to 

perform shortest path calculations on the road 

network within the database, pgRouting 

(Orkney, Inc., 2013) is employed. In detail, 

the A*-Algorithm (Hart et al, 1968) is used 

for shortest path calculations in the given 

road network. 

 

Figure 4. (about here) Rolling Schedules 

approach illustration (from Scholz (2010)). 

The timeline is divided into discrete time 

periods 𝑃1 , . . . , 𝑃𝑛 and a Planning Horizon - 

abbreviated ”Horizon” – that defines the 

duration that the system plans ahead. After 

𝑃1 is over the Horizon is rolled forward by 

one time period 

 

Figure 5. (about here) The test area for WSC 

optimization marked with the dark grey box – 

the overview in (a) and the detailed map in 

(b) 

 

Figure 6. (about here) Map with the entities 

present in TI1(a) and TI2 (b) – piles, saw 

mills and haulage companies 

RESULTS 

Using ALNS for WSC optimization with the 

test instances described in chapter 5 leads to 

a comparison of an initial solution and an 

optimized solution for the WSC instances at 

hand. Due to the fact that RSA is employed 

in optimizing any test instance, specific 

Planning Horizons (PHs) are defined. TI1 and 

TI1 are evaluated with respect to the 

following two PHs: 

 PH1 : start: September 23rd; end: 

September 25th  

 PH2 : start: October 21st; end: 

October 23rd 

In addition, the performance of ALNS is 

tested with different q values - i.e. number of 

requests that are deleted and reinserted. The 

evaluation is done with 𝑞 = {2, 4, 8, 20}. The 

results are displayed in Table 1. The Table 

shows results for given TIs, PHs and for 

given values of 𝑞. The objective values of the 

initial solutions are given in column 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , 

and the objective values of the best solutions 

computed with ALNS are visualized in 

column 𝑠𝑏𝑒𝑠𝑡 . The relative increase of the 

objective value with respect to the initial 

solution is given in column inc[%]. 

 

 
 

Table 1 Results of ALNS applied to test instances T I1 and T I2 for the defined P Hs. ndenotes the 

problem size (number of timber piles), the number of vehicles is represented by v, s initial is the objective 

value of the initial solution, and sbest denotes the objective value of the best calculated solution. The 

relative increase of the objective function is denoted with inc[%] 

TI PH q n v sinitial sbest inc[%] 

1 1 2 43 35 17,130.64 19,318.36 12.77 

1 2 2 24 35 897.64 5,090.90 467.14 

1 1 4 43 35 17,130.64 19,061.98 11.27 

1 2 4 23 35 897.64 5,060.06 463,71 

2 1 2 93 35 223,453.98 219,196.25 -1.91 

2 2 2 64 35 160,282.85 158,135.80 -1.34 
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2 1 8 93 35 223,453.98 274,182.55 22.70 

2 1 20 93 35 223,453.98 245,483.75 9.86 

 

 

 
Table 2 Test instances and iteration number of the best achieved optimization result –denoted as 

“#iteration” – which gives an indication of the optimization speed 

TI PH q N #iteration 

1 1 2 43 1825 

1 2 2 24 164 

1 1 4 43 3709 

1 2 4 23 252 

2 1 2 93 n.a. 

2 2 2 64 n.a. 

2 1 8 93 8078 

2 1 20 93 1487 

 

CONCLUSION 

In this paper the foundations for optimizing a 

certain representation of a WSC are 

described. In order to overcome the 

traditional shortcomings of a contemporary 

WSC – which mostly manifests itself in the 

lack of cooperation between the stakeholders 

both horizontally and vertically – the 

approach published in this paper facilitates a 

transparent cooperation within the supply 

chain. The WSC itself can be characterized 

by a mathematical problem class, namely the 

VRPPDTW. This problem class allows the 

mathematical formulation of the WSC as a 

LP, which can be optimized using heuristical 

algorithms. In this context ALNS is chosen as 

appropriate optimization method, due to the 

fact that heuristics have a better performance 

than exact optimization methods. 

To apply ALNS to the spatial 

problem WSC optimization, ALNS has to be 

enhanced by the spatial domain. Thus, ALNS 

is augmented in order to consider the spatial-

temporal domain of the problem, which is 

necessary for: 

 spatial-temporal ”localization” of 

timber piles, saw mills and vehicles 

 determination of validity of created 

solutions 

 determination of travel distances and 

travel times – i.e. transport costs 

 calculation of similarity of requests 

 determination of requests that are 

reachable for a particular vehicle 

located at a certain position – here 

time geography can be employed 

(Scholz & Bartelme, 2011) 

To be able to cope with the uncertainty in 

simulating future events, a rolling schedule 

approach is used. Rolling schedule 

approaches reduce the complexity of the 

optimization problem by strictly looking at a 

given planning horizon and optimizing the 

remaining problem within this time slice. The 

length of a planning horizon can be arbitrarily 

chosen, but has to be set in a way that the base 

data for the optimization are not pure 

speculation. The mathematical model and 

optimization methodology is applied to two 

problem instances with varying planning 

horizons and parameters 𝑞 . A comparison 

with the initial solutions of a given problem 

gives evidence, that ALNS with spatial 

amendments is capable of optimizing the 
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WSC with respect to initial solutions. Crucial 

for the optimization process itself are the 

control parameters – e.g. 𝑞  or start 

temperature of Simulated Annealing. They 

are crucial for the chance to find an optimized 

solution within the course of the algorithm 

and for the speed of the optimization. Future 

research items comprise a comparison with 

real-world WSCs, a detailed evaluation of 

optimization control parameters as well as a 

generalizability of the results in order to be 

applied e.g. in other Supply Chains 

accordingly. Through a monitoring of real-

world WSCs the system could be fine-tuned. 

Additionally, a comparison with real-world 

data could give more insight in the quality of 

the optimized results. 
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