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Abstract

Scheduling is a well known problem from mathematiasl has practical relevance espe-
cially for allocating limited resources in produstiprocesses. Thus, scheduling is general-
ly regarded as having a temporal component. Thieipalaborates on spatial scheduling
problems which Vehicle Routing Problems (VRPs) members of. In particular we focus
on a complex class of VRPs that incorporates Picagh Delivery as well as Time Win-
dows. To provide decision support, this problenfoisnulated as a linear program. Addi-
tionally, time geography is employed to model tlmnplexity of the spatio-temporal di-
mension inherent in VRPs. For simulation and optation time geography is able to con-
tribute by a filtering approach to identify feagibtustomers in the planning process of a
vehicle route. This approach can be implementeaniroptimization algorithm to provide
decision support for VRPs.

1 Introduction

Scheduling describes a problem class where limiésturces are committed to possible
tasks with special consideration of the temporagusace. In mathematics the Job Shop
Scheduling is a well-known problem where the omfgobs on a set of machines is deter-
mined, given different jobs and machines to fulfilé tasks. The results of these problems
are plans that define the temporal order of tasksrder to cope with the limited resources
accordingly. Additionally, a given objective funmti has to be minimized — e.g. production
costs or travel time.

Vehicle Routing Problems (VRPs) describe dispatghiituations where a number of cus-
tomers demand a good or service that are storaddiepot and delivered by a set of vehi-
cles. Hence they are related to scheduling problasnthey define the order of delivery
processes while minimizing a given objective. TEhesoblems are spatial in nature and
have relevance in everyday life. A classic exanipléhe transportation of beer from the
brewery to depots and from there to the pubs usirgks located at the depots.

Given the motivation above, this paper focuses @tisle Routing Problems (VRPS),
which are well known problem classes in literat(gay. TOTH & VIGO 2002). In general,
VRPs are not solvable by computationally simpletires in short time — less than poly-
nomial time (DA\SGUPTA ET AL 2006). As they are defined by computational cexity
theory as being NP-complete or NP-hardhgR 1972), they require superpolynomial com-
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putational time. It can be noticed, that VRPs aratial in nature, and thus have a relation
to "real-world" problems that can be analyzed zitij Geographical Information Science
& Technology (GIS&T).

In order to solve Scheduling Problems, and VRPgarticular, a number of algorithms
from Operations Research (OR) exist, that are caisgd in three classes AllBI 2009,
PISINGER & ROPKE 2005, ROPKE 2005): Exact methods, Approximation algorithms and
Heuristics. Exact methods require at least polyabtiine to generate an optimal solution.
Approximation algorithms are regarded as altereatikccording to CHBAUM (1996)
they provide a solution and an error guaranteelagxpg that the obtained solution is at
worste times more costly than the best solution. Hewssére quick, with regard to com-
putational speed, but do not provide a certaint&oiuquality. Thus, the results may be
suboptimal in comparison to exact algorithms. Adaug to LAPORTE & SEMET (2002)
Heuristics are categorized into three main clas€smstruction Heuristics Two-phase
HeuristicsandImprovement HeuristicBasically, Construction Heuristics create a felasi
solution, but do not optimize the result. Two-phbkiristics decompose the VRP into the
two underlying problems — clustering of customerd eouting the vehicles. Subsequently,
the two problems are solved one after the othather cluster-first, route-secormt route-
first, cluster-second- with feedback between them. Improvement Hegsdty to improve

a given solution based on a change of customersmawnehicle routes.

In this paper the coupling of algorithms from ORMWGIS&T theory is analyzed, which is
necessary to model the spatio-temporal dimensiam.study is based on VRPs which are
regarded as complex Scheduling Problems. In péatithe VRP with Pickup and Delivery
and Time Windows (VRPPDTW) is a specific VRP instarhat adds several degrees of
freedom to a standard VRP which increase the codtpldn this paper we present an
approach to model VRPPDTWs with time geography.séhindings are implemented in
an Improvement Heuristic to solve VRPPDTWSs acca@lyinThe implementation of the
optimization Heuristic to optimize a VRPPDTW is rautbject of this paper, as this is laid
out in detail for the application area Wood Supphain in £HOLzZ & BARTELME (2010).

The organization of the paper is as follows: Chagtéighlights related scientific work

done in this area. In chapter 3, VRPs are descrifididwed by a chapter on modeling

VRPs with time geography. A basic sketch of a sotualgorithm utilizing time geography

is given in chapter 5. Chapter 6 elaborates oni@pdécision support for the scheduling
problem under investigation and chapter 7 conclutiespaper and lists future research
items.

2 Related Work

This section elaborates on the publications thatsabstantial for this particular work. This

section discusses work published in the areasig2écision Support Systems (SDSSs),
GIS&T and OR. Additionally, a considerable amouhpmgress has been achieved in the
field of Forestry Decision Support Systems.

Foundations of SDSSs are the works alRBY & SCOTT-MORTON (1971), who define
basic decision types, necessary to distinguish céenized systems “helping” in a decision
situation (DSS vs. Expert Systems)alMzEwsSKI (1999) defines the term Multi Criteria
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Decision Analysis and describes how decision supigsopossible utilizing Geographical
Information Systems (GISs). The state of the al$DESs is summarized inAUCZEWSKI
(2006) where coupling techniques between GIS arukid® support techniques are de-
scribed too.

The VRP was first published byARTzIG & RAMSER (1959). In order to get a general in-
troduction in Graph Theory the book afNENICKEL (2005) is appropriate. An overview of
GIS and network analysis is given ilrs€HER (2004). In this paper the VRP is described as
a consisting of two subproblems: (a) finding aniropt assignment of customer orders to
vehicles and (b) minimizing total travel cost bytiopzing the vehicle routes. The descrip-
tion given in FSCHER (2004) utilizes the paper of¥HER & JAIKUMAR (1981). This publi-
cation introduces a solution methodology for VRRsdd on the well-knowproblems
generalized assignmeandTraveling Salesman Problem with Time Windpoegsrespond-
ing to the VRP subproblems (a) and (b) mentioneéiSTHER (2004). LAPORTE (1992)
lists a number of VRP variants and solution aldgoni$ including FSHER & JAIKUMAR
(1981) approach. The behavior of the latter is diesd as iterating between solving the
generalized assignment problem and the TravelingsB&n Problem with Time Windows
repeatedly (LPORTE 1992, p. 353), Hence, this approach is categomzetivo-phase solu-
tion method — i.e. cluster-first, route-second rodtfLAPORTE& SEMET 2002). A contem-
porary overview on VRPs and their optimization tdges is given in dTH & VIGO
(2002) and in ©TH & VIGO0 (2002a). To solve VRPs, besides of exact and appetion
techniques, heuristical techniques can be appdied (ALBI 2009,BIANCHESINI & RIGHINI
2005,PISINGER& ROPKE2005).

3  Vehicle Routing Problems

VRPs are problems where goods or services arghditgd between customers and depots
(ToTH & VIGO0 2002). VRPs are at the intersection of the Bin Racknd the Traveling
Salesman Problem, due to their nature of assigmingmber of customers to a vehicle and
developing optimized routes for each vehicle wigjtall assigned customers. Hence, any
VRP relies on the existence of vehicles locatedrat or more depots that perform the
transportation process. The VRP results in a ,pfan‘each vehicle, a route that starts and
ends at a depot, satisfying the needs of the custordespite the fact that there are several
variants of the VRP, @TH & VIGO0 (2002) listed the following basic objects of a VRP

« depot(s): start- and endpoint of vehicles; somedinegarded as place where goods
are stored,;

e customer(s): entities that provide or demand gavdservices; serviced by the ve-
hicles;

< vehicle(s): navigate on the road network; transgodds and visit the customers;
their routes start and end at the according depot;

« road network: defines the connections between met® and depots; must be de-
fined as a connected gra@=(V,E) with a set of vertice¥ and edgeg;

The general case of the VRP is the Capacitated {{MRP) that considers one depot, a set
of customers and a defined number of vehicles éatat the depot. The capacity of vehi-
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cles is limited. In the CVRP each customer hasmaathel of goods, which is formulated as
a vector of demand$ Each single demand is non-negative and may neplite whereas a
depot has a demand @£0. The CVRP results in a collectidghof simple circuita=(vg, v,

..., W, Vo), Wherer is corresponding to a vehicle route visiting a bemof vertices,,. Gen-
erally, any VRP seeks to construct routes suchtktieasum of the costs of all routes is min-
imal and that the following constraints are satidfi

e each circuit visits the depot
e each customer is visited by exactly one circuit

< the sum of demands of the customers visited bycoait not exceed the vehicle
capacity

This problem is known to be NP-hard, which deswitiee fact that an exact solution can-
not be computed in less than polynomial time imieof the input size (krRp1972).

In order to be able to handle additional problehe &re related to the general CVRP a
number of variations have been created, which anationed in DTH AND VIGO (2002). In
the course of this paper focus is given to the VBIPR. The concepts of Pickup and De-
livery as well as Time Windows are described iradéh the next paragraphs.

The VRPPDTW describes a situation where each cugstaither provides or demands
goods. Thus, the vehicles have to move goods frauitkup location to an appropriate
delivery location. In addition, the customers néede served within a defined time win-
dow, a concept described by e.9AULNIERSET AL. (2002). Hence, the VRPPDTW adds
a number of additional constraints to the geneMRE. To formalize the constraints we
consider a graps=(V,E,w)such that each customer is a vendx V. Each customeris
associated with a time intervad; [ h] wherea andb denote the start and end of the time
window of customer, within the service has to take place. Additiopathe service — i.e.
the pick up or delivery process — has a duratiow ¢ime instants, which is denoted as
service time. The quantity to be picked up or deldd is represented by the variabtes
and d;, respectively. For each customer the vertex dfior®, of the demanded and the
destination verte®; of the goods to be picked up is defined. In otdemodel the temporal
dimension the grap&=(V,E,w)underlying the VRP uses weighted edges, where edgé
e=(v,u) is weighted with the travel time between vertiveendu. Additionally, the fastest
and slowest possible speed for each edge is statgdh is necessary for spatio-temporal
modeling described in chapter 4.

The objective of the VRPPDTW is to find a collectiof circuits with minimum cost with
respect to the following criteria:

e each circuit starts and ends at a depot
e each customer vertex is visited exactly by oneudtirc
* the load of a vehicle is non-negative and doe®roéed the vehicle capacity

« for each customer, the customeO; has to be serviced before customebut
within the same circuit
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« for each customdr the customebD; has to be serviced after customéut within
the same circuit

« each customaris serviced within the time windowa[ b]

e during the service of any customethe vehicle remains at the vertefor 5 time
instants

The VRPPDTW is, like the CVRP, NP-hard in the streense (KrRP1972). Hence, exact
solution methods are very costly in terms of corapabhal time. In order to overcome the
limitations of exact algorithms, heuristics are éaypd and integrated in a decision support
environment, which is described in chapter 5.

4  Time Geography and VRPs

Modeling and representing time and movement in Ggugcal Information Systems
(GISs) is a “trend” in research, which is undergitrby publications by e.g.ARBAL ET
AL. (2007), KUIPERS ET AL (2010). Based on the work of AHERSTRAND (1970) and
LENNTORP (1976) this chapter aims to describe VRPs with ik of time geography.
These considerations are later used for simulaimjoptimizing VRPs accordingly, which
forms the basis for spatial decision support.

Time geography reflects the fact that a personresaurce is available at a certain location
at a certain time. Each human is able to trade tigeEnst space and vice versa, and can
thus be present at a specific location, which meguiransportation (M5ERSTRAND 1970).
The representation of movements in space can belawaith space-time paths. The slope
of the path is an indicator of the travel speedeical path denotes a stationary activity.

As time geography defines constraints of movemeéntspace and time, the underlying
space-time mechanics considers three constraiapsbdlity, coupling and authority con-
straints (HAGERSTRAND 1970). Basic physical restrictions are summarineder capability
constraints. Coupling constraints describe the flaat two persons can only meet if they
are at the same location at the same time. Authonhstraints are used to model con-
straints of a certain domain, e.g. time windows tfeg service of customers. Space-time
prisms (STPs) are two intersecting conesN{LTORP 1976) in a space-time graph. This
construct depicts the locations that can be visiggeen a defined travel speed, a start and
an end location. The interior of the STP is calpedential path space, which represents all
locations in space and time that can be reachdtielpotential path space is projected to
the geographic 2D space this results in the patiepdith area (MLER 1991).

VRPPDTWSs can be modeled and visualized using tigegphy, which gives insight in
the complexity of such a scheduling problem. Rivetelaborate on the modeling approach
for time window constraints at the customers, whichisualized in Fig. 1. In Fig. 1(a) a
dl-cone is created that represents the potentialtions of vehicles that are able to service
the customer within the time window ABBAL ET AL. 2007). Due to the fact that dl-cones
do not represent that any service must start asttiré time of the time window —waiting

for the service time to start is not allowed — aeds cut out of the dl-cone (see Fig. 1(b)), a
complex dl-cone. The cone to be cut out denotdsedltions that would reach the customer
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too early — i.e. before service time starts — ewden driving at lowest allowed/possible

speed. Hence, only those vehicles are considerbd & the customer within the time win-

dow whose location is within the cone. Followingdk principles any optimization algo-

rithm is able to “filter” out those vehicles whielne not of importance for a certain custom-
er, which speeds up the optimization process ad.hdite versa this approach is usable to
select those customers that are of relevance dertain vehicle or route.

Time

latest arrival time

destination §

Geographic space

>V

(@) (b)

Geographic space

Fig. 1:  Dl-cone example in (a), fromARBAL ET AL. (2007). An example of a complex
dl-cone is given in (b).

Additionally, the potential path area of any veistarting and stopping at a certain depot
is analyzed. While the potential path area spanbatgeen the depot as start and endpoint
has a certain size (see Fig. 2(a)), its size isedsed each time a decision is made to visit a
certain customer. Considering VRPPDTWSs, every datibas to be made with regard to
the pairs of pickup and delivery customers. Ongéckup customer is visited, the accord-
ing delivery customer has to be visited within #agne circuit, which limits the possibilities
of visiting other customers from a spatio-tempgratspective (see Fig. 2(b)). In Fig. 2(b)
the customec; is chosen as first serviced customer. Here wenasghat the goods picked
up atc; have to be delivered @@. Thus, at decision point 1 any optimization altfori has

to check if another customer can be inserted incthauit before reachings. From the
figure it is clear that, is not reachable within its time window, agdis a candidate cus-
tomer butcs cannot be serviced @& is inserted in the circuit. At decision point 2 @ptimi-
zation algorithm would have to check if any othestomers could be serviced afterwards.
Due to the fact that the potential path area igtdichin its size — light grey colored area in
Fig. 2(b) at the top of the STP — no additionatcoeers are possible.

5 Basic Solution Algorithm

In order to solve the VRPPDTW, several heuristiesappropriate, which is mentioned in
chapter 1 and chapter 2. In this paper we focusrenimprovement Heuristic — Adaptive
Large Neighborhood Searchi$RIGER& ROPKE2005,ROPKE2005)—and couple this Heu-

ristic with time geography. This approach is aldéhelp to increase the efficiency of the



Decision Support for a Complex Spatial Schedufngblem 7

optimization process, by an intelligent selectiongess based on time geography, which
will be described in this chapter.

latest arrival time
at depot

latest arrival time

STP after c;

: +ot I
.~ "1 decision -

@) (b)

Fig. 2:  The STP of a circuit starting and ending at daderdepot and six potential cus-
tomers to be visited;-cs, represented by complex dl-cones — simplified by d
cones for visualization issues (a). In subfiguret(le resulting STP after having
visited c; is shown in dark grey, and if the circuit decideservecs afterc; the
resulting STP is shown in light grey.

Adaptive Large Neighborhood Search (ALNS) — depidte Fig. 3 — starts from a given
initial solution for any given VRPPDTW that is cted using a Construction Heuristic and
iteratively destroys and repairs the solution ligehtly, in order to improve it. Thus,
ALNS employs one of three available destroy heigsstio “ruin” a solution — remove cus-
tomers from the solution — and subsequently regh&ssolution using one of three repair
methodologies. Both — destroy and repair — heasstiake use of spatial relations, which
is laid out inSCHOLZ & BARTELME (2010) and SHoLz (2010). Especially for the repair
process, time geography is of importance. Theseidiigs take the “destroyed” solution
and try to include currently unassigned customeos Yisited by any vehicle) into the solu-
tion at the position that results in the least éase of overall transport costs or which are
hard to insert afterwards. This evaluation andcile process requires, regardless of the
actual implementation, considerable computing poavet time, given the numerous com-
binations of circuits, positions within the circiahd unassigned customers. Thus, time
geography can help in pre-selecting only thoseotosts that are feasible for a given insert
position in a circuit, based on the considerationshapter 4 (see Fig. 3). Hence, only these
customers selected with the help of time geogragmtey evaluated regarding their insert
costs for a given insert position, which is reduttes evaluation effort and speeds up the
optimization process. For details on ALNS procedwfer to Scholz & Bartelme (2010),
PISINGER& ROPKE (2005),ROPKE (2005).
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start

! !

initial solution: s *

ALNS: apply one repair
‘ heuristic to s~ result: s*

‘
§=§

ALNS: apply one destroy
heuristic to s; result: s~
s* accepted s* not accepted
time geography:
pre-selecting possible s=s* §=8
customers for each insert I I
position in s~
| stop
criterion
met
result: l
a collection of sets, stop
where the kth set criterion End
contains the not met

possible customers
for insert position &

Fig. 3:  Algorithmic sketch of ALNS with the pre-procesgistep using time geography
before the application of a repair heuristic — blase SHOLZ & BARTELME
(2010).

6 Spatial Decision Support for Scheduling Problems

As scheduling problems are of practical natureyraber of “everyday life” situations — i.e.
decisions —can be supported by software systemardar to handle spatial problems
MALCzEWSKI (1999) described the concept of Spatial Multi €i& Decision Making,
which forms the basis for SDSSs.AMzEWSKI (1999) lists Model Base Management
System, Model Base, Database Management Systera, Bate, Dialog Generation and
Management System as essential parts of any SDSS.

The Model Base and Model Base Management Systenaiootie “intelligence” of any
SDSS. For scheduling problems under review inghjger, a linear program can be defined
that describes VRPPDTWSs accordingly. Examples ohdormulations are given inOTH

& VIGO0 (2002) and in BHoLz (2010). Based on a linear program in the modeéban
optimization algorithm is able to generate solutidternatives and to evaluate them accord-
ingly, as described in chapter 5. Subsequentlyeasibn matrix is created and its entries
are ranked based on the evaluation. Due to thetlfiatta GIS is lacking such complex
modeling methods (@AKHAR & MARTEL 2003), optimization algorithms are coupled with
GIS technology and inherited into a SDSS. Thisdseassary in order to benefit from the
advantages both "worlds" have to offer.
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7 Conclusion and Future Work

This paper elaborates on a specific problem claksspatial scheduling, namely

VRPPDTW, and how spatial decision support can théeaed for this problem. The focus

of this paper is on the description of VRPPDTWexamples of complex scheduling tasks.
The novelty of this paper is in the modeling of \&RWith the help of time geography. As

time geography is not limited to the visualizatiohthe complexity and spatio-temporal

connections of VRPs, it is used for filtering puspe of feasible combinations of customer
services and for the creation of vehicle routediwia VRP. The implementation of these
considerations in an optimization heuristic faatits spatial decision support for complex
problems. Open research items in this context cm@pm comparison of an optimization

heuristic with and without time geography in teraisomputational performance. In addi-

tion, the evaluation of other spatial schedulinghpems, like harvest planning in forestry,

or collaborative planning issues, relevant for peat applications. In addition, advancing

the modeling in terms of time geography as wellh&sspatial enablement and application
of optimization algorithms from OR can be listedfatsire research topics.
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