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Abstract 25 

The role of digital technologies for fostering sustainability and efficiency in forest-26 

based supply chains is well acknowledged and motivated several studies in the scope of 27 

precision forestry. Sensor technologies can collect relevant data in forest-based supply chains, 28 

comprising all activities from within forests and the production of the woody raw material to 29 

its transformation into marketable forest-based products. Advanced planning systems can help 30 

to support decisions of the various entities in the supply chain, e.g. forest owners, harvest 31 

companies, haulage companies, forest product processing industry. Such tools can help to deal 32 

with the complex interdependencies between different entities, often with opposing objectives 33 

and actions – which may increase efficiency of forest-based supply chains.  34 

This paper analyzes contemporary literature dealing with digital technologies in forest-35 

based supply chains and summarizes the state-of-the-art digital technologies for real-time data 36 

collection on forests, product flows and forest operations, as well as planning systems and 37 

other decision support systems in use by supply chain actors. Higher sustainability and 38 

efficiency of forest-based supply chains require a seamless information flow to foster 39 

integrated planning of the activities over the supply chain - thereby facilitating seamless data 40 

exchange between the supply chain entities and foster new forms of collaboration. Therefore, 41 

this paper deals with data exchange and multi-entity collaboration aspects in combination 42 

with interoperability challenges related with the integration among multiple process data 43 

collection tools and advanced planning systems. Finally, this interdisciplinary review leads to 44 

the discussion of relevant guidelines that can guide future research and integration projects in 45 

this domain.  46 
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1. Introduction 52 

The Forest-based Supply Chain (FbSC) comprises a temporal sequence of spatially 53 

referenced activities from the forest to the customer that transform the woody raw material to 54 

marketable forest-based products (e.g. D’Amours et al. 2008). The FbSC is commonly 55 

structured into four distinct processes: Procurement, Production, Distribution and Sales to 56 

final clients. Procurement describes the production of raw timber by harvesting activities. 57 

This includes the temporary storage of the raw material at the forest roadside and subsequent 58 

transportation to the production facilities. Production encompasses the processes that 59 

transform the raw timber into different marketable intermediate or final products. Finally, 60 

these products are distributed to the market and sold to the clients. The activities are 61 

performed by different stakeholders of the FbSC, like forest owners, harvesting enterprises, 62 

haulage companies or forest industry in general. These actors are connected by material, 63 

monetary and information flows. In respect to material flows, authors usually distinguish 64 

between lumber, pulp and paper, biomass and other forest products (D’Amours et al. 2008; 65 

Scholz 2015; Cambero & Sowlati 2014; De Meyer et al. 2014; Mafakheri & Nasiri 2014). 66 

The scope of this research is focused on the digital technologies that have been 67 

developed over recent years to support the management of FbSCs. In recent years, a wide 68 

range of digital technologies such as RFID, GPS-based tracking devices, light detection and 69 

ranging (LIDAR) were successfully applied to collect data about forest characterization and 70 

operations monitoring, remotely and as un-expensive as possible. Advanced planning systems 71 

and similar software solutions provide support to planners and decision makers.  72 

Yet, in many cases, these technologies remain as singular solutions that apply to an 73 

isolated forest, process or machine, and are tailored to case-specific applications (Rönnqvist et 74 

al. 2015). One of the main reasons is that the nature of supply chain activities, their planning 75 

and control processes and the relationships between the supply chain actors varies greatly 76 

among countries and regions. So, generalization requires caution. For example, in 77 

Scandinavia (e.g. Sweden and Finland), medium to large forest enterprises manage the whole 78 

supply chain from procurement, transport and distribution to sales. While in Austria forest 79 

ownership is dominated by small privately owned forests. Only a minor proportion of the 80 
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forested land is owned by the state and big forest enterprises. Typically, procurement, 81 

transport and sales are done by independent entities of the FbSC – i.e. forest owner, haulage 82 

company, forest industry.  83 

Higher sustainability and efficiency in FbSCs poses new challenges to the research and 84 

development of digital technologies (e.g. Forest Platform Vision 2030, Digitizing Europe 85 

Industry Initiative). One key aspect is to integrate multiple process data collection solutions to 86 

reach a value-chain coverage (D’Amours et al. 2008). This poses new research challenges 87 

related with software interoperability, i.e. how to assure efficient and seamless data exchange 88 

between devices from different providers. Another key aspect is to increase the scaling 89 

capabilities of existing singular solutions for wider application (e.g. to other countries and 90 

regions) while still being able to cope with local specificities. This aspect is a must to reach 91 

economies of scale in the development of digital technologies and to lower development and 92 

utilization costs. Further research is needed to show how advanced planning systems can 93 

better utilize the large amount of data that becomes available to improve the dynamics of 94 

planning and operations control processes (D’Amours et al. 2008; Rönnqvist 2003). 95 

Furthermore, the social dimension of supply chains needs to be investigated further and 96 

efforts should be made to enhance data sharing among multiple companies of the supply chain 97 

and foster collaborative business opportunities (Audy et al. 2012b; Beaudoin et al. 2010; 98 

Frisk et al., 2010; Holweg et al. 2005).  99 

This framework leads to the research questions tackled in this paper: 100 

Question 1: Which are the most promising digital technologies for improving efficiency 101 

in managing operations in the forest-based supply chains, retrieved from the literature? 102 

Question 2: Which guidelines can be taken from the literature and the researchers past 103 

experience, to guide future research and development towards a seamless information flow for 104 

integrated management of FbSCs, facilitating data exchange and collaboration? 105 

To answer these questions, this article highlights relevant literature concerning planning 106 

in FbSCs, collaboration in SCs and technological solutions having potential to contribute to 107 

solve the identified missing links in the FbSC. This implies that the authors do not claim to 108 
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provide an exhaustive list of developments. The article does not cover developments in 109 

remote sensing, as this is out of the technological scope of this article. Hence, we provide 110 

references to relevant papers in the field of remote sensing in forestry.  111 

In Chapter 2, the methodological approaches for identifying and classifying the 112 

publications considered in this paper as well as for defining guidelines, has been described. 113 

Based on the classification approach, Chapter 3 covers the publications divided in three 114 

sections: (1) Digitizing technologies for process data collection over the FbSCs (Section 3.2), 115 

(2) Advanced planning systems for FbSCs (Section 3.3) and (3) Technologies to support 116 

collaboration in SCs (Section 3.4). Chapter 4 presents guidelines to guide future research and 117 

development towards a seamless information flow for integrated management of FbSCs, 118 

facilitating data exchange and collaboration.  119 

2. Methodology 120 

The methodological approach to identify and classify the publications considered in this 121 

review is based on 4 steps, as described in Seuring and Müller (2008). The first step is 122 

literature collection. The literature search was done in Thomson Reuter’s Web of Science 123 

database in January 2014 and updated in March 2017. The search terms used for Topic were 124 

"forest" AND "supply chain" AND ("planning" OR "sensors" OR "technology" OR 125 

“Interoperability”). Additional search criteria are publications written in English and 126 

published between 1995 and 2017. Since information on new software tools and ongoing 127 

research projects is not always available as peer reviewed articles, other types of publications 128 

have been considered as well, including reports of EU projects such as the EFORWOOD 129 

project and the FOCUS project. The second step is the descriptive analysis. In several 130 

iterations, the authors evaluated formal aspects of the publications list, including the 131 

publication type (e.g. Journal paper, Conference paper, Report, Book, Other), year of 132 

publication and journal type. The third step is category selection. The authors convey to a 3-133 

dimensional classification schema (Figure 1), representing (1) the FbSC processes (i.e. 134 

Procurement, Production, Distribution, Sales, Entire supply chain); (2) the type of value chain 135 

(i.e. pulp and paper, biomass, lumber, all types, other), and (3) type and sub-type of digital 136 

technologies (i.e. Process data collection tools, planning systems, interoperability and 137 
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integration). This classification schema is the result of thorough collaboration of a 138 

multidisciplinary team of experts involved in the EU FP7 project FOCUS (Focus Consortium 139 

2018). The selected articles have been stored, documented and classified using the open 140 

source software Zotero (Roy Rosenzweig Center for History and New Media 2018). The 141 

fourth step relates to Content Analysis. The authors carefully analyzed each paper concerning 142 

their contribution to the body of knowledge in the field of FbSCs. The results are documented 143 

in the following sections.  144 

  145 

Figure 1: 3-dimensional classification schema used for classifying the publications considered 146 

in this literature review. 147 

 148 

Next, guidelines were defined in the course of a 2-phase collaborative process similar to the 149 

one described in Marques et al. (2013). In this context, a guideline is a statement by which to 150 

determine a course of action. Guidelines have been successfully used to assist practitioners in 151 

various domains, including the development of technologies for the forest sector. In this 152 

research, guidelines have been used to express the experts’ opinion about the main outcomes 153 

of the literature review and also to express their implicit knowledge in the development and 154 

use of technologies for forest-based supply. This may help to guide future work. The process 155 

of guidelines identification has been conducted by 12 experts involved in the FP7 research 156 

http://www.focusnet.eu/
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project, FOCUS, including 4 technology providers, 3 forest practitioners and 5 researchers 157 

from Portugal, Austria, Belgium, Finland, Germany and Switzerland. During the first phase, 158 

the experts met in a workshop to discuss the results of the literature review and conduct a 159 

brainstorm exercise for identifying relevant practices, also based on their personal 160 

experiences. In a second phase, two researchers took the lead in consoling the information 161 

into guidelines. Then, each expert assessed the proposed guidelines and expressed their 162 

suggestions in a second (remote) workshop. Consensus was finally reached in respect to the 163 

relevant guidelines and its adequate writing. 164 

 165 

 166 

 167 

3. Literature overview 168 

This chapter presents the literature review conducted for this paper, and describes the relevant 169 

literature. The literature is divided into thematic complexes and described in the sections of 170 

this chapter. The thematic sections contain digitizing technologies for process data collection, 171 

advanced planning systems for FbSCs and technologies to support collaboration in SCs. 172 

3.1.Classification results 173 

This review brings together 132 publications which are published between 1995 and 2017. 174 

Figure 2 presents the absolute distribution of the publications according to their publication 175 

type and publication year. In total, 102 journal publications, 12 conference proceedings, 10 176 

book chapters and 8 reports have been reviewed. This equals to a relative distribution of 77% 177 

journal papers, 9% conference proceedings, 8% book chapters, 6% reports. Looking at the 178 

publication frequency per year, starting from 1995 until 2017, it is notable that there is a 179 

constant publication rate during the period from 2007 until 2012 where each year more than 180 

10 papers have been published. Of course, the year 2017 is not representative for the whole 181 

year, as the literature search was done in May 2017. 182 
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 183 

Figure 2. Distribution of publications according to the publication year and publication type 184 

(1995-2017). 185 

Each publication has been classified according to their digital technology, the FbSC process 186 

and the type of the value chain addressed. Table 1 shows a detailed distribution of the 187 

publications according to these classification criteria. First of all, it is clear that the dominant 188 

fields are the lumber and biomass supply chains – having a share of 64% (lumber) and 25% 189 

(biomass) of all selected publications. Furthermore, an overwhelming majority of the 190 

publications covers planning systems focusing on procurement – 92 of 132 papers. In general 191 

113 papers are dealing with procurement, which equals to 86% of all publications. Only 23% 192 

of the relevant publications are focused on interoperability and integration. Most of these 193 

publications look at interoperability and integration from the perspective of lumber value 194 

chains. In addition, for biomass value chains most papers focus on planning systems in 195 

procurement.  196 

 197 

 198 

0

5

10

15

20

1995 1996 1997 1998 1999 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

N
u

m
b

er
 o

f 
p

u
b

lic
at

io
n

s

Year of publication

Book Conference proceedings Journal Other Report



 

9 

Table 1. Distribution of publications according to their FbSC type, process, and digital 199 

technology. 200 
 All Biomass Lumber other Pulp & Paper Total 

Distribution       2 2 4 

Interoperability and integration       2 1 3 

Planning systems         1 1 

Procurement 3 26 82 1 1 113 

Interoperability and integration 1 1 19     21 

Planning systems 2 24 55 1 1 83 

Process data collection tools   1 8     9 

Production   2     1 3 

Interoperability and integration         1 1 

Planning systems   2       2 

Sales     1     1 

Planning systems     1     1 

Entire supply chain 1 5 2 2 1 11 

Interoperability and integration   1 2 1 1 5 

Planning systems 1 4       5 

Process data collection tools       1   1 

Grand Total 4 33 85 5 5 132 

 201 

3.2.Process data collection tools 202 

To ensure a seamless communication between stakeholders in the FbSC, (near) real-time data 203 

should be collected and shared across the FbSC. Therefore, this section focuses on sensor 204 

technologies to enable the collection of (near) real-time data. However, the smartphone will 205 

play a role in the future for data collection within the forest as is shown by Rosset et al. 206 

(2014). 207 

3.2.1. Remote data collection to characterize forests 208 
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Data collection for forest inventory using smartphones is gaining momentum in the 209 

community. At least two systems for smartphones are available: Trestima and MOTI. 210 

Trestima (Trestima Inc. 2018; Siipilehto et al. 2016) is a forest inventory tool developed for 211 

smartphones. The forest inventory data are determined and calculated based on photographs 212 

taken with the smartphone. Data are sent to the cloud and analyzed there, which helps to save 213 

precious battery power. MOTI (Berner Fachhochschule 2018) is similar to Trestima, but is 214 

targeted towards experienced professionals (Rosset et al. 2014). The application does not rely 215 

on an Internet connection as observations are stored in the smartphone. Both systems, MOTI 216 

and Trestima, are capable of support foresters in collecting forestry inventory data. As a 217 

consequence, these data could serve as starting point for managing the FbSC appropriately, 218 

based on recent forest inventory data. 219 

The use of remote sensing techniques for forestry planning and inventory gained momentum 220 

with the development of high resolution sensor systems (satellite and aerial). Hence, in the 221 

mid-1990ies Holmgren and Thuresson (1998) concluded that image data contained little 222 

relevant information, and that other data collection methods were more efficient. Only some 223 

years later several papers elaborate on methodologies and techniques to extract information 224 

on forests from remotely sensed data (e.g. Gougeon and Leckie 2003; Desclée et al. 2006; 225 

Verbesselt et al. 2010; Carleer and Wolff 2004). Especially, the combination of LIDAR and 226 

satellite/aerial image data is regarded as promising technology to collect forest inventory data 227 

(Hirschmugl et al. 2007; Reutebuch et al. 2005; Dalponte et al. 2008; Wulder 1998). With the 228 

help of satellite and aerial images, forest disturbances can be detected and monitored (e.g. Jin 229 

and Sader 2005; Neigh et al. 2008).  230 

Unmanned aerial vehicles (UAVs) were initially developed for military use, but have been 231 

increasingly deployed in civilian applications – such as mapping, monitoring, and natural 232 

resources (Newcome 2004). Paneque-Gálvez et al. (2014) mention, that UAVs in forestry are 233 

primarily used to monitor forest fires (Ambrosia et al. 2003; Casbeer et al. 2006; Merino et al. 234 

2012), but also to map tree crowns, forest stands and volume estimation (Lin et al. 2011; 235 

Hung et al. 2012; Dunford et al. 2009; Aber et al. 1999). Zhang et al. (2016) show that 236 

lightweight UAVs offer a certain potential for long-term ecological monitoring of small areas 237 

(local scale). Similar to the latter paper, Puliti et al. (2015) show that UAVs have the 238 
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following advantages for monitoring small forested areas: a) high spatial and temporal 239 

resolution b) UAVs provide timely information on a local scale. 240 

3.2.2. Track-and-trace forest products and equipment 241 

RFID and wireless sensing technologies are amongst the most used for Track-and-trace forest 242 

products and equipment. RFID sensors can further collect relevant measurement data along 243 

the chain. Accurate, real-time data can be used e.g. to improve yield and logistic processes 244 

and to reduce waste and environmental impacts. Compared to other means of automatic 245 

identification such as optical methods, RFID technology has clear advantages in terms of 246 

reliability, robustness and read range. Especially dirt, dust and mechanical damage are 247 

challenges for optical methods that can be eliminated by using special RFID transponders.  248 

For identification purposes passive RFID technology is typically the most cost-efficient 249 

solution as the transponders are low-cost and maintenance-free (Häkli et al. 2013). The 250 

potential of RFID in timber supply chains has been highlighted in Korten and Kaul (2008) as 251 

well as in Murphy et al. (2012). As there are a multitude of products generated out of wood, it 252 

is hard to determine the lifespan of a “product” – and the need to track it along the supply 253 

chain. As a first attempt literature focuses on the tracing of the wood in the procurement stage 254 

of the FbSC. Nevertheless, tracing of the timber could be extended to other stages of the 255 

FbSC as well and amended with other sensors (e.g. humidity or temperature). Besides RFID, 256 

the use of terrestrial LIDAR systems has proven to be successful in predicting the wood 257 

quality of standing trees (Stängle et al. 2014). 258 

The two dominant and commercially available technologies of passive RFID are Near Field 259 

Communication (NFC) and Ultra-High Frequency (UHF) RFID. NFC, a short-range 260 

technology operating at the frequency of 13.56 MHz, has gained popularity in consumer 261 

applications, as the NFC reader has become a standard feature of today’s cellular phones 262 

(NFC Forum 2018). UHF RFID that enables read ranges of up to 10 meters is a standard 263 

technology in logistics and industry defined by the ISO standard 18 000 – 6C, commonly 264 

known as EPC Gen2 (GS1 EPCglobal Inc. 2018). Wood with varying moisture content is a 265 

challenging environment and mounting platform for a UHF transponder, both electrically and 266 

mechanically. Therefore, the standard transponders designed for logistics applications are not 267 
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usable for forest applications as such. Special UHF RFID transponders for marking round 268 

wood have been developed (Häkli et al. 2013). In order to extend the functionality of a RFID 269 

system, it is possible to add sensing components, such as temperature or humidity sensors or 270 

passive transponders. A few sensors are also commercially available (e.g. Mitchell 2005). 271 

Active transponder is a radio transmitter that works on its own battery and sends the 272 

identification and the measurement data either directly to a base station or via a network 273 

formed by other sensors (RFCode Inc. 2018). The standards for active radio based wireless 274 

sensors include Bluetooth LE, ZigBee and Dash-7. Föhr et al. (2014) used smart phones with 275 

NFC features as well as gate readers equipped with wireless internet connection to transfer 276 

data from RFID-tacked biomass containers. 277 

In respect to track-and-trace wood trucks, a number of approaches are mentioned in scientific 278 

literature (e.g. Scholz 2010; Scholz 2011; Castonguay and Gingras 2014; Holzleitner et al. 279 

2011). Generally, monitoring trucks in (near) real-time involves determining the truck’s 280 

position and status (e.g. engine status or load condition) and sending them to a server, where 281 

the data are stored for visualization and analysis purposes (Menard et al. 2007; Devlin et al. 282 

2008; Scholz et al. 2008; Scholz 2010; Scholz 2011; Castonguay and Gingras 2014). The 283 

analysis and visualization can be achieved with desktop or web-based Geographical 284 

Information Systems (GIS). Web-based GISs have the advantage of being accessible via the 285 

Internet, utilizing standardized services and offering the possibility to instantly visualize the 286 

current position and other auxiliary sensor data. 287 

A certain number of similar solutions use the location-based service metaphor to transmit data 288 

from the vehicles to a central server (D’Roza and Bilchev 2003; Adams et al. 2004; Brockfeld 289 

et al. 2007; Brimicombe and Li 2009). Location-based services are services that utilize the 290 

self-positioning capabilities of mobile devices – which can be mounted on trucks, and submit 291 

or receive information relevant for its position. A generic system architecture for that purpose 292 

is presented by Scholz et al. (2008), Scholz (2010), Scholz (2011) and Castonguay and 293 

Gingras (2014). The architecture for such Location-based services can be either proprietary or 294 

follow open standards. 295 

The sensors that gather data of the vehicles are sensors with self-positioning capabilities, i.e. 296 
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making use of Global Navigation Satellite Systems (GNSS). For Europe, the in-development 297 

Galileo system is of interest, but currently U.S. operated Global Positioning System (GPS) 298 

and the Russian GLONASS are the favored GNSSs. For gathering other vehicle relevant data, 299 

the Controller Area Network (CAN) Bus of vehicles offers a number of data relevant for the 300 

FbSC, such as current load of the truck, activity of the truck (loading, driving, etc.), or 301 

breakdown. Coupling CAN Bus data and GNSS with the location-based service metaphor 302 

seems like a possible strategy to gather location-aware data from timber trucks (Rao and Rao 303 

2013). 304 

3.2.3. Productivity-related sensors embedded in the equipment 305 

The monitoring of the productivity of forest operations can contribute to manage and optimize 306 

the FbSC, in order to optimize subsequent operations like transport, storage or production. 307 

Besides the methods mentioned in the prior sections, it is possible to exploit sensors present 308 

on forest machinery to generate productivity related data. The objective is to obtain (near) 309 

real-time productivity data from forestry machines (e.g. harvester, forwarder, skidder and 310 

skyline yarder systems) and log transportation (trucks), to collect data of the ongoing 311 

harvesting, forwarding and transportation processes. 312 

Ziesak et al. (2015) and Mittlboeck et al. (2015) describe an approach to monitor forest 313 

machinery data containing of CAN bus via the software iFOS and a system called 314 

TimeControl (Wahlers Forsttechnik GmbH 2018). TimeControl together with iFOS allows the 315 

recording of input from the operators and the fusion of this data stream with sensors 316 

embedded in the machine. The operator is able to report on e.g. the following operations: 317 

transport, work, repair, break, service, etc. The system iFOS is able to document on the 318 

machinery data like: engine revolutions, forces on rear blade, hydraulic oil temperature, 319 

driving speed, position, etc.  320 

Hence, this system is able to document any disturbances (e.g. delays, machinery breakdowns) 321 

and execution updates (e.g. volume flows and machinery productivity - produced m3 timber 322 

/hour). Based on the data, by embedded sensors, it is possible to detect deviations of executed 323 

versus target goals which were specified in the plan.  324 
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3.3.Planning Systems 325 

Since all kinds of planning problems arise along the wood supply chain, and cover 326 

different time horizons, supply chain management and optimization have proven to be of 327 

increasing importance in the forest industry (Carlsson et al. 2005). Planning the activities in 328 

FbSC requires decisions at the strategic, tactical and operational level, which differ in their 329 

temporal and spatial scales as well as in their information requirements and aggregation 330 

levels. A variety of papers elaborate on approaches to model and optimize the planning of 331 

FbSC on a strategical, tactical and/or operational level, including the approaches to improve 332 

the efficiency of the FbSC. Different examples indicate that optimization of supply chains is 333 

crucial and brings added value in comparison to traditional decision making (Ouhimmou et al. 334 

2009; Shabani et al. 2016; Ghaffariyan et al. 2013). Several review papers already exist 335 

bringing together literature covering the use of Operations Research (OR) methods applied to 336 

the FbSC (e.g. D’Amours et al. (2008) and Rönnqvist (2003)) and more widely the biomass-337 

based supply chain (e.g. Bravo et al. (2012); De Meyer et al. (2014); Wee et al. (2012)). 338 

Therefore, this chapter does not claim to represent and exhaustive list of literature, but focuses 339 

the criteria defined in Section 2. 340 

3.3.1. Strategic planning 341 

Planning on a strategic level is about optimizing the long-term decisions related to the 342 

design of the forest-based supply network and the allocation of forest operations. This has to 343 

be done with respect to income generated by harvesting and other cost intensive operations 344 

such as planting, tending or (to a less extent) thinning for a specified spatial region over a 345 

given time horizon (e.g. Jones et al. 2008) and/or in relation to market prices for feedstock 346 

and end product (Kong et al. 2015). The geographical extent subject to strategic planning is at 347 

least a forest estate, a collection of forest stands or sub-compartments. In contrast, it is 348 

possible to approach long-term planning from the single-tree upwards, which disregards 349 

planning area constraints existing in planning (Martín-Fernández and García-Abril 2005). The 350 

time horizon of strategic planning may reach from several years to decades depending on the 351 

rotation length. A thorough review of Decision Support Systems (DSS) for forest 352 

management is presented in Packalen et al. (2013). This review includes both research 353 

prototypes and commercial solutions such as the Iptim software for Integrated Planning for 354 
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Timberland Management (Simosol 2018). 355 

In general, there are two main approaches to strategic planning: simulation-based 356 

approaches (Muys et al. 2010) and optimization (Rönnqvist 2003). In scenario-based 357 

planning, a management regime is proposed and the outcome is simulated – which is in turn 358 

evaluated by the planners. This approach is iterative, as planners may simulate several 359 

different scenarios at a time or one after the other and compare the results (Lappi et al. 2014). 360 

Eker (2011) uses simulation to assess different procurement systems for unutilized logging 361 

residues. Simulation is also introduced, whether or not in combination with optimization, to 362 

move towards hierarchical planning with the goal to provide greater flexibility to operational 363 

level managers and a mechanism to anticipate its impact on the strategic and tactical level 364 

plans (Gautam et al. 2015; Paradis et al. 2013; Kong et al. 2014) Optimization approaches 365 

mandatorily need the formulation of an objective for the plan and the constraints under which 366 

the objective is satisfied. The defined problem is subsequently solved with a mathematical 367 

optimization method. In general, there are various optimization methods available: variations 368 

of Linear Programming (LP), Integer Programming (IP), Mixed Integer Programming (MIP) 369 

and metaheuristics (e.g. Tabu Search, Simulated Annealing, Genetic Algorithms) for single 370 

objective formulations (De Meyer et al. 2014). Although each model has its specific use, 371 

generally these optimization models are then applied to define the optimal number, type 372 

and/or location of a new terminal and/or biorefinery in relation to biomass supply, product 373 

demand and the operations in the supply chain (Leduc et al. 2012; Parker et al. 2010; De 374 

Meyer et al. 2015; Natarajan et al. 2012; Mirkouei et al. 2015; Palander et al. 2013; Ranta et 375 

al. 2014). Therefore, these optimization models often include spatial information regarding 376 

feedstock resources, existing and potential refinery locations and a transportation network to 377 

determine the optimal locations, technology types and sizes of manufacturing facilities to 378 

satisfy their objective (Parker et al. 2010; De Meyer et al. 2015). To improve decisions 379 

considering time issues, De Meyer et al. (2016) add a growth model to simulate biomass 380 

growth and regeneration after harvest to the equation. Dansereau et al. (2010) apply mixed-381 

integer linear programming to compare the behavior in manufacturing-centered supply chain 382 

with the behavior in a margins-centric supply chain.  383 

3.3.2. Tactical and operational planning 384 
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Tactical and operational planning are restricted to shorter planning horizons and smaller 385 

spatial extents compared to what is applicable with the strategic planning. The tactical 386 

decision level addresses medium term (usually monthly) decisions, related to the wood-flow, 387 

covering a planning horizon between 6 months and 5 years (D’Amours et al. 2008), with an 388 

extension to 10 years in some cases. The overall wood-flow starts with standing trees in 389 

forests and continues with operations such as harvesting, bucking, sorting, transportation to 390 

terminals, sawmills, pulp and paper mills, heating plants, etc. for conversion into all kinds of 391 

products (Carlsson et al. 2005). A typical example of an optimization model addressing 392 

tactical planning is presented by Gunnarsson et al. 2004. Operational planning encompasses 393 

short term decisions related to activities in the field. Hence, planning horizons of operational 394 

planning range from a few seconds to 6 months (Rönnqvist 2003). The literature on tactical 395 

and operational forest planning reports the use of a wide range of mathematical models, which 396 

include LP, IP, MIP, Non-Linear Programming, Dynamic Programming and Constraint 397 

Programming (Rönnqvist 2003).  398 

Harvest scheduling describes the decisions needed to be taken regarding which stands to 399 

harvest and in which temporal order within the planning horizon. Medium to short term 400 

tactical harvest scheduling problems consider smaller management areas, and have shorter 401 

planning horizons, which allow a linkage with operational considerations, like bucking 402 

(Chauhan et al. 2009; Chauhan et al. 2011; Epstein et al. 1999; Gerasimov et al. 2014). 403 

Beaudoin et al. (2008) as well as Bredström et al. (2010) presented an annual planning 404 

problem with integrated harvest scheduling/sequencing. Bredström et al. (2010) amended the 405 

optimization with harvest machine assignment. Both use a two phase solution method where 406 

one sub-problem – e.g. machine assignment - is solved and serves as input for the other sub-407 

problem - e.g. harvest scheduling. Harvest planning on operational level comprises decisions 408 

related to the extraction of logs from the felling sites to the road side and bucking/sorting 409 

operations. Biomass recovery issues and skidding problems on steep slope terrain can be 410 

solved with optimization approaches by designing an optimal off-road transport network 411 

(Ezzati et al. 2015; Montgomery et al. 2016). Bucking operations basically contain the cutting 412 

of harvested trees into different log types, with respect to the demand of the market, in order 413 

to receive the maximum value. To optimize bucking operations, an algorithm is needed to 414 
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perform the optimization on the levels of stem, stand and forest (Chauhan et al., 2011). 415 

Methods for optimizing bucking operations are found e.g. in Marshall et al. (2006), Chauhan 416 

et al. (2011), Epstein et al. (1999), Dems et al. (2017) and Laroze and Greber (1997). Epstein 417 

et al. (1999) propose a multi-period procurement model that takes harvesting, bucking and 418 

transportation into account. Chauhan et al. (2011) extend the latter methodology of Epstein et 419 

al. (1999) by a hierarchical model where the matching of supply and demand, as well as 420 

bucking are solved independently and iteratively.  421 

Road network planning is often integrated with harvest scheduling and deals with road 422 

construction, upgrading and clearing of snow in order to access forest stands. Murray & 423 

Church (1995) presented an integrated IP model that addresses medium-long term harvest 424 

scheduling and road building decisions considering adjacency constraints. They used 425 

Interchange, Simulated Annealing and Tabu Search as solution methodologies. Andalaft et al. 426 

(2003), Guignard et al. (1998) and Weintraub et al. (1996) presented MIP harvest planning 427 

models to determine where roads can be built/upgraded according to different quality 428 

standards. Maximum slope (Gruber and Scholz 2005) and turn radius of trucks and earthwork 429 

when the road crosses hillsides (Epstein et al. 2006) are among the other technical 430 

considerations, which are - although rarely - taken into account. Henningsson et al. (2007) 431 

describe two incapacitated fixed charge network MIP models, including multiple time periods 432 

and different road classes. These models are used in the optimization module of a DSS called 433 

RoadOpt (Karlsson et al. 2006). 434 

Transportation planning addresses the transport of timber from the roadside to the 435 

destination, which can be either a pulp and paper mill, a saw mill, a heating system, a 436 

terminal, etc. (Andersson et al. 2008; Akhtari et al. 2014; Alam et al. 2012; Alayet et al. 437 

2013; Beaudoin et al. 2007; Carlsson et al. 2005). Tactical transportation planning relies on 438 

an aggregated supply and demand that is necessary for establishing timber flows between 439 

origin and destination locations. Of significant importance is the possibility to consider 440 

backhaul routes (Carlsson and Rönnqvist 2007; Hirsch and Gronalt 2008). In addition, wood 441 

bartering between companies can be also included (Palander and Väätäinen 2005; Forsberg et 442 

al. 2005). Transportation planning at operational and tactical level mainly addresses truck 443 

scheduling and dispatching. In order to model the problems at hand, the Vehicle Routing 444 
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Problem (VRP) approach and the Pickup and Delivery Problem (PDP) variants (Audy et al. 445 

2012a) are used. The first approaches towards truck scheduling have been published by 446 

Weintraub et al. (1996) that resulted in the project ASCIAM. In general, solution methods for 447 

transportation planning include MIPs (Palmgren et al. 2004; Palmgren et al. 2003; Rey et al. 448 

2009). The solution is calculated with a two-phase column generation method. Tabu Search is 449 

proposed by Gronalt and Hirsch (2007) based on the Unified Tabu Search Algorithm (UTSA) 450 

for a general VRP in order to generate truck schedules. Flisberg et al. (2009; 2012) extend the 451 

UTSA, which is applied to a consolidated PDP in order to transform the PDP into a VRP. El 452 

Hachemi et al. (2009; 2011a) propose models addressing decisions that take supply and 453 

demand assignment into account when calculating truck schedules. Hence, the methodology 454 

first generates the wood flow from supply to demand, followed by the generation of the daily 455 

routes. In order to minimize non-productive activities in the supply chain (truck and loader 456 

waiting time, empty trucks), El Hachemi et al. (2011b) propose a two-phase solution 457 

methodology that comprises constraint programming and an IP model. Scholz (2015) uses an 458 

Adaptive Large Neighborhood Search methodology to optimize truck schedules and timber 459 

flow from source to destination points. Because there is the need to solve dispatching models 460 

quickly (close to real-time), there is a tradeoff between solution speed and quality. Rönnqvist 461 

and Ryan (1995) report on a hybrid solution method in which two different greedy heuristics 462 

search for the best routes for each truck. Carlsson et al. (1998) use an IP model in which 463 

entire routes (i.e. set of different trips) are represented as variables with the idea to allocate 464 

trips to existing truck routes. Gerasimov et al. (2014) present a tool set for Russian logging 465 

companies combining different optimization tools to support truck routing, fleet utilization 466 

levels, and choice of transport method. 467 

3.3.3. Addressing uncertainty in FbSC planning 468 

Since predicting the availability of raw materials is often impossible, uncertainty has 469 

been incorporated in harvesting planning models to move towards a robust harvesting 470 

planning model (Bajgiran et al. 2017). Some models, looking at the complete supply chain, 471 

introduce uncertainty to their supply chain planning optimization question. Uncertainty plays 472 

a key role in different stages, such as uncertainty in biomass availability and biomass quality 473 

(Shabani et al. 2014; 2016a; 2016b; Sharifzadeh et al. 2015), timber supplies (Vergara 474 
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González et al. 2016) and uncertainty related to biomass-to-biofuel conversion efficiencies 475 

(Xie and Huang 2015). Marques et al. (2014) combine their (operational) optimization 476 

approach with discrete-event simulation models to tackle uncertainty in planning harvesting 477 

and forest operations. These discrete-event simulation models are able to assess the 478 

performance and to identify bottlenecks associated with the execution of the optimized, 479 

deterministic plans, when unforeseen events occur (Marques et al. 2014; Myers et al. 2003). 480 

Furthermore, the quality of the feedstock or the intermediate product is decisive for its final 481 

destination (Ghaffariyan et al. 2013). Therefore, several models keep track of changes in 482 

feedstock quality throughout the supply chain (De Meyer et al. 2015; De Meyer et al. 2016; 483 

Dems et al. 2015; Sosa et al. 2016; Van Dyken et al. 2010; Alayet et al. 2013; Andersson et 484 

al. 2016) 485 

Most optimization models strive to minimize costs in the supply chain costs or to 486 

maximize the profit in the supply chain (De Meyer et al. 2014). However, also environmental 487 

and social oriented objectives are decisive to make the supply chain sustainable as a whole. 488 

For multi-objective problems, methods such as Multi-Criteria Decision Analysis (Kangas et 489 

al. 2008), goal programming (Kangas et al. 2008) and multi-criteria approval (Laukkanen et 490 

al. 2004) can be applied. Examples of multi-objective optimization in strategic, tactical and 491 

operational planning can be found in Broz et al.(2017), Dong et al. (2010), Kühmaier and 492 

Stampfer (2012), Vaskovic et al. (2015) and Palander (2011a; 2011b). 493 

Other approaches have been applied to wood-based supply chains, besides optimization 494 

and simulation approaches. For example, Chang et al. (2014) performed a disaggregated 495 

trade-flow analyses to investigate the global competitiveness of lumber.  496 

3.4.Interoperability & Integration and Collaboration 497 

The following section elaborates on technologies and initiatives that enable the sharing of data 498 

and/or information across institutional borders. To date several interoperability initiatives and 499 

standards exist – especially on the syntactic level – whereas the integration in each 500 

stakeholder’s systems and the collaboration of stakeholders is still regarded as work in 501 

progress.  502 

3.4.1. Interoperability  503 
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Interoperability represents technologies and methodologies which ensure seamless data and 504 

information sharing over institutional and organizational “borders”. For example, Rossman et 505 

al. (2008) have developed the “Virtual forest” as an intelligent planning and decision support 506 

tool for forest growth and wood mobilization. In order to efficiently gather and visualize the 507 

data by bringing together databases, aerial surveys and satellite technology with virtual 508 

reality, robotics and machine learning. 509 

Interoperability needs to be solved on a technical level (i.e. syntactic interoperability). If 510 

syntactical interoperability is ensured, literature suggests that two or more computers should 511 

be equipped with systems to automatically interpret the information exchanged in a 512 

meaningful and accurate manner. This concept is regarded as semantic interoperability, which 513 

is e.g. utilized in the Semantic Web.  514 

From the IT-perspective, a supply chain can be represented by spatio-temporal information 515 

chunks present in applications or in databases connected via web-based Service-Oriented 516 

Architectures (SOAs) (Sahin and Gumusay 2008). SOA itself is not a technology but rather a 517 

strategic concept (Detecon Consulting 2006). The goal of a service-oriented architecture 518 

approach is the optimization of IT flexibility, IT productivity and business processes as well 519 

as achieving better reusability of data and processes (Liebhart 2007), which makes it an ideal 520 

concept to be considered in modern location-enabled information infrastructures. If the 521 

functionality is made available as a service over a network, it is referred to as a web service. 522 

Papazoglou (2008, p. 5) defines a web service as a “self-describing, self-contained software 523 

module available via a network, such as the Internet, which completes tasks, solves problems 524 

or conducts transactions on behalf of a user or application”. In order to fully benefit from the 525 

service concept, the standardization of interfaces between the different components of the 526 

forest supply chain plays an important role for planning and control of the overall system. 527 

A prerequisite for allowing applications and systems to communicate with each other in an 528 

agile and flexible way is the interoperability between the systems and interfaces used. The 529 

Open Geospatial Consortium (OGC) and ISO have created web service interface standards for 530 

publishing, accessing and visualizing spatio-temporal information (de la Beaujardiere 2006). 531 

The standards emerging from the OGC Sensor Web Enablement Initiative (SWE) are 532 
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designed to collect sensor measurements in a standardized way and augment the sensor data 533 

with the spatio-temporal dimension (Bröring et al. 2011). Thus, any machine control data or 534 

timber log data, mostly in the format of the Standard for Forest machine Data and 535 

Communication (StanForD) (Arraiolos et al. 2011; Fritz et al. 2010), can be coupled with a 536 

spatial and temporal reference. StanForD constitutes a de-facto standard that covers all types 537 

of data communications present in forest machines. In addition, standards of SWE guarantee 538 

standardized transmission, storage and dissemination of the sensor data. SWE enabled 539 

services will be designed to support the discovery of sensor assets (harvesters, trucks, etc.) 540 

and capabilities, access to those resources and data retrieval, subscription to alerts, and 541 

tasking of sensors to control observations (Bröring et al. 2011). 542 

As a first step towards standardization in the wood supply chain, Von Schnetzler et al. (2009) 543 

propose a modification of the generally used Supply Chain Operations Reference (SCOR) 544 

model to describe and standardize the wood supply chain. This model enables a generalized 545 

mapping of forest reality and ensures a common understanding, for describing and analysing 546 

processes, interfaces, etc. (Von Schnetzler et al. 2009). Santa-Eulalia et al. (2010; 2011) 547 

present FORAC Architecture for Modeling Agent-based Simulation for Supply chain 548 

planning (FAMASS) as a framework to provide a uniform representation of distributed 549 

advanced Planning and scheduling systems using agent technology to support simulation 550 

analysts. Within this context, Frayret et al. (2007) also present a generic software architecture 551 

to combine agent-based technology and operations research-based tools in order to integrate 552 

the ability of agent technology in distributed decision problems, and use Operations 553 

Research (OR) to develop and exploit specific normative decision models. 554 

3.4.2. Collaboration 555 

Addressing the interoperability requirements is mandatory but not in itself sufficient to assure 556 

effective collaboration between the agents of the FbSC. Previous research already established 557 

the importance of collaboration to increase the efficiency of multi-echelon supply chain SC 558 

(e.g. Barratt 2004; Holweg et al. 2005; Mesfun and Toffolo 2015). Collaboration approaches 559 

are identified as the key to unveil the potential cost optimization and profitability (Audy et al. 560 

2012a; Beaudoin et al. 2010; Frisk et al. 2010; Lehoux et al. 2011). Yet, implemented 561 

examples of collaborative systems are still hardly found. Some examples of inter-firm 562 



 

22 

collaboration where studied in forest logistics and transportation. Carriers or shipping 563 

companies collaborate by pooling their needs, requests and/or resources to obtain significant 564 

cost reductions (Agarwal and Ergun 2010; Audy and D’Amours 2008; Audy et al. 2011; 565 

Carlsson and Rönnqvist 2007; Frisk et al. 2010). Current hurdles in implementing 566 

collaboration approaches in the FbSC are to be found in company policies that hinder the 567 

cooperation between different stakeholders. Mostly these restrictive company policies are 568 

fueled by confidentially of data and cost allocation problems between the partners (Marques 569 

et al. 2016). In addition, a lack of technical solutions and standards to share data and 570 

information may prevent stakeholders to cooperate in the FbSC – as existing solutions would 571 

require a certain investment in technical capabilities of the stakeholders. If a FbSC is 572 

dominated by SME’s these investments in technical capabilities could be a hurdle for 573 

implementing collaborative approaches – such as a Semantic Web approach for sharing data 574 

in the FbSC (Weinberger and Scholz 2018).   575 

To implement collaboration approaches, a number of techniques exist. First, there are 576 

approaches from OR, in which mathematical formulations, exact and heuristic solution 577 

methods have been used to optimize and integrate the perspective of different agents (e.g. saw 578 

mill and haulers) (D’Amours et al. 2008, Akhtari and Sowlati 2016; Gautam et al. 2014; 579 

Kurniawan et al. 2011; Machani et al. 2014; Mansoornejad et al. 2010). Second, economic 580 

models exist that address the distribution of costs and benefits among stakeholders such as 581 

incentives or cost/savings allocation mechanisms (Audy et al. 2007; Forsberg et al. 2005). 582 

Some researchers focus on collaborative strategies, such as Vendor Management Inventory 583 

(VMI) or collaborative forecasting, where Collaborative Planning, Forecasting and 584 

Replenishment (CFPR) is the more recent methodology. Both approaches are based on 585 

information exchange and joint decisions. Examples in the forestry sector are described in 586 

Lehoux et al. (2007; 2009; 2011).  587 

Existing frameworks (Audy et al. 2012b; Arraiolos et al. 2011; Azouzi and D’Amours 2011; 588 

Little et al. 2012; Zhang et al. 2016: Jerbi et al. 2012) identify crucial issues, originating from 589 

interactions among involved agents in FbSCs (e.g. the information exchange or the 590 

cost/savings distribution issue). However, they fail to provide tools to identify opportunities 591 

within the supply chain for which implementation of such collaborative strategies would be 592 
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beneficial. Furthermore, when talking about collaboration a lot of questions arise related to 593 

confidentiality of data and agreements on cost allocation (Marques et al. 2016). 594 

4. Guidelines for the future development of technologies in forest-based supply 595 

chains 596 

Based on the literature review and researchers past experiences, guidelines have been defined 597 

to guide future research and development towards a seamless information flow for integrated 598 

management of FbSCs, facilitating data exchange and collaboration. 599 

4.1 Strengthen the planning with a tight integration of strategic and tactical levels 600 

as well as to provide easy-to-use optimization tools for professionals 601 

A tight integration of strategic and tactical planning is not that common in practice. This 602 

poses a clear challenge to effectively utilize strategic planning for optimal supply chain 603 

management. 604 

Much research has been conducted in OR about forest planning, but few IT-tools are available 605 

for and utilized by professionals. This is especially true in Central Europe where conditions 606 

are challenging to implement simulation of forest growth and management operations at the 607 

detail level required for optimization. Main challenges are related to heterogeneous site 608 

conditions, close-to-nature silviculture, multiple-purposes forestry and the ownership 609 

structure. 610 

4.2 Extend the technological capabilities of forest-based supply chains with sensors 611 

Fostering sustainability and efficiency in FbSCs requires monitoring harvesting operations 612 

and giving real-time feedback to all included actors in this process. The target must be to 613 

decrease the reaction time to the various requests such as machine problems, declining 614 

productivity, delay in the harvest or new demands from sawmills. The clear process 615 

orientation (as opposite to machine orientation) provides extra value for the typical, complex 616 

multi-partner value chains in forest harvesting.  617 

Generally, there is a need for an integrated, (near) real-time, process oriented solution 618 

combining sensor measurements, position and spatial data. Thus, relevant data for the supply 619 

chain – e.g., of the trucks and the harvesting machinery – can be visualized in (near) real-time 620 
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utilizing the map metaphor, the web-based GISs. In addition, the integration of various sensor 621 

measurements with positional data enables e.g., the detection of deviation from an optimized 622 

haulage plan, which in turn can notify a logistics manager or an optimization system. Finally, 623 

this enhances the current situation, as current supply chain (SC) optimization solutions have a 624 

rather static nature – i.e. they generate optimized plans for a given situation. By utilizing 625 

(near) real-time monitoring capabilities, the system can react instantaneously and alter the 626 

plans for e.g. trucks accordingly in real-time. 627 

RFID already proved to be useful to track wood products along the value chain. The 628 

possibilities to extend its technological capabilities with sensor measurement, like moisture, 629 

has not yet been assessed for practical usage. However, this represents an important issue 630 

considering the quality of wood-based product, especially biomass, and its deterioration along 631 

the value-chain. 632 

4.3 Implement a new and an innovative approach to integrate planning and control  633 

All kinds of events may require an immediate or less urgent changing of the existing, 634 

optimized plan (Broman et al. 2009; Rosset et al. 2015). For example, after the storm Gudrun, 635 

there was a direct shortage of both harvest and transportation capacities for the forest 636 

company Sveaskog, requiring the over-night adaptation of the existing logistic planning 637 

(Broman et al. 2009).   638 

The planning models, described earlier, are designed to define the optimal allocation of 639 

resources with respect to objectives, requirements and constraints of the stakeholders in the 640 

supply chains (Rosset et al. 2015). Control techniques detect deviations of the plan that may 641 

cause interventions that require altered plans for the stakeholders (Rosset et al. 2015). Among 642 

the control techniques, model predictive control (MPC) has proved to be an attractive 643 

alternative to apply in SC management (Sarimveis et al. 2008; Hai et al. 2011). The main 644 

advantages of MPC in SCs are its ability to deal with variability in supply and demand (Wang 645 

et al. 2007; Puigjaner and Laínez 2008) and the possibility to integrate constraints in the 646 

process (Wang et al. 2007). A preliminary analysis highlights the benefits of MPC in a 647 

biomass supply chain in Finland (Pinho et al. 2015).  648 
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Model predictive control (MPC) represents a new way to consider FbSCs in terms of 649 

dynamically interconnected tanks (e.g., wood material at different planning and processing 650 

stages), which levels are supervised and anticipated as well as adjusted in an (half-)automated 651 

and optimized way to comply with target stock levels and constraints. Depicted as such, MPC 652 

represents potentially a powerful technology for collaboration among SC actors. Sensor data 653 

will play a major role to supervise stock levels in an automated way, when stressing the 654 

metaphor of interconnected tanks. 655 

However, the chances of success mainly depend on the willingness of SC stakeholders to 656 

share their data. From the technological point of view, the challenges are:  657 

1) To define which part of planning and control can be delegated to MPC, especially 658 

which operations to adjust stock levels over time in an automated way.  659 

2) The integration of MPC with planning tools on a strategic, tactical and operational 660 

level. 661 

3) To tackle the functionalities related with supervision and anticipation within the MPC 662 

model itself. 663 

 664 

4.4 Develop a platform for bottom-up integration of IT-solutions  665 

Within the FlexWood project (Fritz et al. 2010; Koch and Unrau 2012; Little and Manzano 666 

2012) a top-down approach has been applied to create a solution for the supply chain of wood 667 

sourcing to a sawmill (Koch and Unrau 2012). However, in order to be attractive for users and 668 

to support integration and collaboration in SCs, the platform should be: 669 

1) applicable to any supply chain within the realm of the forest-based production 670 

sector, or any other sector sharing similar characteristics of dynamically changing 671 

resources with geographically distributed sourcing, e.g. agriculture; 672 

2) based on a bottom-up approach of bringing together already existing solutions for 673 

different pieces of a supply chain to support optimal planning and control of the 674 

whole supply chain; 675 

This implies that several integration techniques need to be supported as well as different data 676 

contents. Although certain common characteristics do exist, the data content used in planning 677 
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is often case specific. Therefore, a rigid approach to “standardizing” the data specification for 678 

the integrating platform is a moot point. A flexible data structure, allowing format changes on 679 

a case-by-case basis, might fit better in such an integrating platform. 680 

Although software solutions for other SCs exist that encompass the management and/or 681 

documentation of the whole SC, the objective here is to create a platform that is capable of 682 

integrating different solutions that cover different parts of the SC with the help of 683 

standardization. The application of solutions from other SCs may seem as valid option, but 684 

the adoption of solutions fitted to other SCs fails to cope with the complexity of the FbSC – 685 

either in the number of stakeholders, products and different tasks to accomplish. This is also 686 

mentioned in Rönnqvist et al. (2015) that describe 33 open problems to optimize the FbSC. 687 

To our knowledge, no IT solution integrates all data on the supply chain (forest management, 688 

harvesting, transportation, and wood processing). The challenge will be to head towards 689 

ubiquitous access to process management data. The feasibility to develop such an integrating 690 

platform has been proven in the EU/FP7-funded FOCUS-project - Advances in Forestry 691 

Control and Automation Systems in Europe.  692 

4.5 Promote collaboration among the supply chain actors 693 

Collaboration allows improving the profitability of FbSCs. It provides opportunities to 694 

improve SC efficiency without large investments by sharing needs and/or resources. It also 695 

requires additional planning and control integration of the entire SC. For doing so, it is 696 

necessary to develop a methodology that takes advantage of the existing collaboration 697 

partnerships but also that identifies new collaborative opportunities and supports their 698 

implementation. 699 

 700 

5. Conclusions 701 

Since the activities in the FbSC are performed by various entities, complex interdependencies 702 

between different entities result in inefficient supply chains due to opposing objectives and 703 

actions by the stakeholders. It is clear that collaboration between stakeholders will provide 704 

opportunities to improve FbSC efficiency, but they can hardly be realized without large 705 

investments by sharing needs and/or resources. However, solving these issues requires a 706 
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seamless information flow to foster cooperation and collaboration in the supply chain.  707 

From the literature, the authors identify that a variety of optimization models and tools exist 708 

concerning the planning in FbSCs. Most models focus on one or only a few forest planning 709 

problems. Therefore, it is necessary to strengthen the planning with an integration of models 710 

addressing the decisions on strategic, operational and tactical level as well as to provide easy-711 

to-use optimization tools for professionals. However, an optimized planning will not support 712 

the collaboration and cooperation between the stakeholders in the supply chain. Although 713 

preliminary, indications point to the added value of model predictive control in combination 714 

with sensor technologies. 715 

The literature review of this article revealed that there is no specific piece of software 716 

missing to optimize and track the FbSC, as there are numerous products on the market and 717 

scientific initiatives/projects around. The crucial issues are to integrate the heterogeneous 718 

systems present in the FbSC and to share data between the stakeholders involved. In order to 719 

coordinate different actors in the FbSC, systems utilizing model predictive control approaches 720 

could be implemented. These systems rely on a (near) real-time, and accurate digital 721 

representation of the reality (i.e. the FbSC), which can be achieved with the help of sensor 722 

measurements.  723 

The proposed integrated system architecture allows the combination of approaches for 724 

planning and control of (forest-based) supply chains with sensor technology and geographic 725 

information systems. This platform serves as the basis for the collaboration between the 726 

stakeholders of the supply chain and for integrating and sharing data over the whole supply 727 

chain in both vertical and horizontal dimensions. This platform ensures the advantage of the 728 

existing collaboration partnerships but also that identifies new collaborative opportunities and 729 

supports their implementation. In addition the modular development of the architecture allows 730 

easy addition or removal of models and approaches without changing the core of the 731 

architecture, questioning the foundations of the system or requiring major, new developments.  732 

 733 
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Appendix: List of papers for the literature review and their classification 744 

Author Year Title  Type Digital 
technology 

Processes of 
FbSCs 

Value 
Chain Type 

Akhtari & Sowlati 2015 Hybrid simulation and optimization approaches to tackle 
supply chain complexities – A review with a focus on forest 
products supply chains 

Journal Interoperability 
and integration 

Procurement Lumber 

Akhtari et al. 2014 Optimal flow of regional forest biomass to a district 
heating system 

Journal Planning 
systems 

Procurement Biomass 

Alam et al. 2012 Modeling Woody Biomass Procurement for Bioenergy 
Production at the Atikokan Generating Station in 
Northwestern Ontario 

Journal Planning 
systems 

Procurement Biomass 

Alyet et al. 2016 Centralized supply chain planning model for multiple 
forest companies 

Journal Planning 
systems 

Procurement Lumber 

Andalaft et al. 2003 A problem of forest harvesting and road building solved 
through model strengthening and Lagrangean relaxation 

Journal Planning 
systems 

Procurement Lumber 

Andersson et al. 2008 RuttOpt — A decision support system for routing of 
logging trucks 

Journal Planning 
systems 

Procurement Lumber 

Andersson et al. 2016 A model approach to include wood properties in log 
sorting and transportation planning 

Journal Planning 
systems 

Procurement Lumber 

Arraiolos et al. 2011 ICT deployment strategy in Aquitaine WSC: The ExploTIC 
breakthrough 

Conference 
proceedings 

Interoperability 
and integration 

Procurement Lumber 

Audy & D’Amours 2008 Impact of benefit sharing among companies in the 
implantation of a collaborative transportation system - An 
application in the furniture industry 

Book Interoperability 
and integration 

Distribution other 
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Audy et al. 2011 Cost allocation in the establishment of a collaborative 
transportation agreement—an application in the furniture 
industry 

Journal Interoperability 
and integration 

Distribution other 

Audy et al. 2007 Virtual transportation manager: A web-based system for 
transportation optimization in a network of business units 

Conference 
proceedings 

Interoperability 
and integration 

Procurement Lumber 

Audy et al. 2012a Planning methods and decision support systems in vehicle 
routing problems for timber transportation: A review 

Report Planning 
systems 

Procurement Lumber 

Azouzi & D’Amours 2011 Information and Knowledge sharing in the collaborative 
Design of Planning Systems within the Forest Products 
Industry: Survey, Framework and Roadmap. 

Journal Interoperability 
and integration 

Procurement Lumber 

Bajgrian et al. 2017 Forest harvesting planning under uncertainty: a 
cardinality-constrained approach 

Journal Planning 
systems 

Procurement Lumber 

Beaudoin et al. 2008 Hierarchical forest management with anticipation: an 
application to tactical–operational planning integration 

Journal Planning 
systems 

Procurement Lumber 

Beaudoin et al. 2010 Negotiation-based distributed wood procurement 
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